Strategy 1:You're always playing 9900x using a martingale sequence, i.e. your wager for each round is
ceiling((2 - PLAYER_BR)/9899,1e-8)
you run out of funds after 6861 bets. You lose all of them with a probability of
0.9999^6861 = 0.5035187605260536
or put differently you have a
49.64812% chance of winning.
Strategy 2:You're constantly playing 20203 satoshi but increase the payout each round by exactly 1x starting at 4951x which will leave you with 1.00004850 BTC profit. You run out of funds after 4949 games and your last payout will be 9899x. You lose all of them with a probability of
prod(1-0.99/i, i=4949..9899) = 0.5035283796177312
leading to a
49.64716% chance of winning.
I Hope the math is correct

How about this:
bet 0.01088928 BTC @ 1.0664%
if you win, your profit is ((99 / 1.0664) - 1) * 0.01088928 = 1.00002474 BTC
if not, martingale at the same chance of winning, to keep the same net profit
you can afford 64 bets
chance of winning = 100 * (1 - ((100 - 1.0664) / 100) ** 64) = 49.649475445976265%
Edit: here are the 64 bets:
chance multiplier
1.0664% 92.83570893x
bet # stake total lost profit
----- ---------- ----------- ----------
1 0.01088902 1.00000087
2 0.01100759 0.01088902 1.00000081
3 0.01112745 0.02189661 1.00000065
4 0.01124861 0.03302406 1.00000001
5 0.01137110 0.04427267 1.00000036
6 0.01149492 0.05564377 1.00000036
7 0.01162009 0.06713869 1.00000051
8 0.01174662 0.07875878 1.00000040
9 0.01187453 0.09050540 1.00000048
10 0.01200383 0.10237993 1.00000031
11 0.01213454 0.11438376 1.00000032
12 0.01226667 0.12651830 1.00000004
13 0.01240025 0.13878497 1.00000078
14 0.01253527 0.15118522 1.00000019
15 0.01267177 0.16372049 1.00000049
16 0.01280975 0.17639226 1.00000021
17 0.01294924 0.18920201 1.00000063
18 0.01309024 0.20215125 1.00000022
19 0.01323278 0.21524149 1.00000024
20 0.01337687 0.22847427 1.00000007
21 0.01352254 0.24185114 1.00000091
22 0.01366978 0.25537368 1.00000026
23 0.01381863 0.26904346 1.00000022
24 0.01396910 0.28286209 1.00000011
25 0.01412121 0.29683119 1.00000014
26 0.01427498 0.31095240 1.00000051
27 0.01443042 0.32522738 1.00000047
28 0.01458755 0.33965780 1.00000020
29 0.01474640 0.35424535 1.00000075
30 0.01490697 0.36899175 1.00000041
31 0.01506929 0.38389872 1.00000021
32 0.01523338 0.39896801 1.00000024
33 0.01539926 0.41420139 1.00000057
34 0.01556694 0.42960065 1.00000032
35 0.01573645 0.44516759 1.00000045
36 0.01590780 0.46090404 1.00000005
37 0.01608102 0.47681184 1.00000003
38 0.01625613 0.49289286 1.00000036
39 0.01643314 0.50914899 1.00000007
40 0.01661208 0.52558213 1.00000001
41 0.01679297 0.54219421 1.00000009
42 0.01697583 0.55898718 1.00000020
43 0.01716068 0.57596301 1.00000020
44 0.01734755 0.59312369 1.00000086
45 0.01753644 0.61047124 1.00000016
46 0.01772740 0.62800768 1.00000067
47 0.01792043 0.64573508 1.00000031
48 0.01811557 0.66365551 1.00000070
49 0.01831283 0.68177108 1.00000065
50 0.01851224 0.70008391 1.00000077
51 0.01871382 0.71859615 1.00000078
52 0.01891759 0.73730997 1.00000032
53 0.01912359 0.75622756 1.00000088
54 0.01933182 0.77535115 1.00000024
55 0.01954233 0.79468297 1.00000076
56 0.01975512 0.81422530 1.00000015
57 0.01997024 0.83398042 1.00000073
58 0.02018769 0.85395066 1.00000016
59 0.02040752 0.87413835 1.00000072
60 0.02062973 0.89454587 1.00000001
61 0.02085437 0.91517560 1.00000025
62 0.02108146 0.93602997 1.00000085
63 0.02131101 0.95711143 1.00000028
64 0.02154307 0.97842244 1.00000067
0.99996551 Edit: and the calculations showing that it works for the first 5 bets:
>>> 0.01088902 * (99/1.0664 - 1)
1.0000008712228057
>>> 0.01100759 * (99/1.0664 - 1) - 0.01088902
1.0000008112303074
>>> 0.01112745 * (99/1.0664 - 1) - 0.01088902 - 0.01100759
1.0000006493023257
>>> 0.01124861 * (99/1.0664 - 1) - 0.01088902 - 0.01100759 - 0.01112745
1.0000000137959488
>>> 0.01137110 * (99/1.0664 - 1) - 0.01088902 - 0.01100759 - 0.01112745 - 0.01124861
1.0000003597824456Edit2: I can make ever increasing longer sequences which do slightly better, but it appears never to beat 49.65222222222% chance of doubling.