Post
Topic
Board Development & Technical Discussion
Re: [Crypto] Compact Confidential Transactions for Bitcoin
by
TPTB_need_war
on 27/06/2015, 01:36:52 UTC
That assumption is no longer present in the current version of paper

Because proving a number is square (or sum of the squares) of some number(s) proves it is not negative. And proving the committed output x is within a range L <= x <= U is accomplished by proving neither x - L and U - x are negative. Readers may refer to cited reference [38] for the details.

I have some naive (non-expert) concerns about the new constructions.

1.  You wrote, "2To save space, SUM j=0 to outputs(∆j) is revealed as an unsigned integer at the transaction level.". Wouldn't such a sum allow some of the operands to be negative and others to be positive offseting. I presume you reveal the ∆ to prove the sum of the squares isn't negative, but appears that optimization in footnote 2 is flawed.

2. There appears to be a typo of an extra superfluous (or missing redundant) parenthesis, "fuzzbits ≈ (curvebits − reservedbits)/2) − valuebits".

3. It appears you avoided factoring fuzzValue into a sum of three squares by inventing a heuristic (to factor into a sum of two squares) to save "50% storage and computation requirements", but at the cost of reducing the security of the value blinding by 1/3 to 1/2 of the bits. Why is this a wise tradeoff? How do you know this heuristic will terminate with less computational cost than factoring?

4. As another consequence of discarding factoring, how do you know that providing one equation of one unknown will not reveal fuzzValue? Does that equation have provably many solutions?

5. Since the security of x2 is lowered by 1/3 bits, how do you know that finding this additional variable thus providing two equations with two unknowns will not catastrophically weaken the security due to some clever algorithm such as for solutions of systems of non-linear equations? Your cited resource [38] pointed out that the prior attempts to be clever to avoid factoring the sum of three (or four) squares lead to a solution that was attackable from both the hardness of the discrete logarithm and the hardness of integer factoring simultaneously, thus required higher bit widths to compensate which ameliorated the efficiency of the algorithm. Isn't the burden of proof on your whitepaper to explain why your cleverness has not introduced analogous vulnerability. I am just really doubting this attempt to avoid factoring to 3 squares. I would naively tend to trust the guy who wrote that cited resource [38] given the breath of knowledge and peer review that apparently went into it.