Unless every owner a token is going to be online mining all the time, then mining will need to be delegated. So some pools have more weighted-balance voting power than others. You need to offer some incentive for mining. Profits accrue to those with the most economy-of-scale if the incentives are market (competitively) priced, thus you will likely end up with the situation that Bitcoin had where a single pool or potential grouping of large pools had more than 51% of the hashrate but in your design this would be more than 51% of the voting power.
Is a cascade of intertwined inter-chained reorganizations when multiple double-spends are reverted by a fork more onerous than in a single block chain? Isn't that complexity similar to the reason you
rejected multiple inputs and outputs in transactions?
The key failure in your design is the lack of incentive to have a consensus. What is the incentive for voting nodes to agree with the correct fork and for minority nodes to agree with the majority fork? Seems to me they can all disagree and no one can prove otherwise, because they can pretend to have never heard the votes of others (no way to prove receipt of a vote on the internet). This shows that without the objectivity of a PoW, then there is no objectivity and you end up in chaos.
In PoW, miners have an incentive to reach consensus because otherwise their rewards won't be honored by the longest chain. In your system the majority of the vote is the winning fork, except there is no penalty for delaying for an indefinite period acknowledging receipt of such a vote. Thus complex game theories arise. Even more critically, the majority vote may be split among multiple forks, such that there is no consensus, because you have multiple chains thus a plurality of permutations of forks.
I do want readers to note which of the three posters in this thread was able to state directly the design error. That should be instructive to
investorswhich lead developer is most qualified.