You are quite right. However, the first probable prime still fails.
The positive result is:
Primality testing 65004063504559525007738276505391185322137155270201199057971076511954045665048965173722209501026611156768988779138868408914387452650147975793533060274322762631 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N-1 test using base 7
Running N+1 test using discriminant 19, base 1+sqrt(19)
Calling N-1 BLS with factored part 49.24% and helper 2.29% (150.19% proof)
65004063504559525007738276505391185322137155270201199057971076511954045665048965173722209501026611156768988779138868408914387452650147975793533060274322762631 is prime! (0.0250s+0.0033s)