Post
Topic
Board Mining
Re: Potentially faster method for mining on the CPU
by
botnet
on 26/08/2013, 06:40:30 UTC
Cool.  How are you generating the formulas?  Iterating through each input possibility?

The 8th bit "explosion" is probably due to triggering the use of a 2nd path of 32bit addition.

The formulas for 32bit add (64 in, 32 out) get very large very quickly (http://jlcooke.ca/btc/sha256_logred_formulas.html) due to carry bits.  Result r_31 depends on a_31 .. a_0 and b_31 .. b_0.

To generate formulas, I do an in-order walk of the tree, and simplify at each level going up... although I'm not sure I fully understand your quesiton.

Quick update, I've been trying out Maple as a potential replacement for Mathematica.  BooleanSimplify chokes on even 8 bits, but doing simplify( (arithmetic expression mod 2, {a*a-a, b*b-b, c*c-c, ....}) does way better.   Maple seems to evaluate these expressions an order of magnitude faster than mathematica, although the resulting equations aren't as compact.  It also consumed a modest 300 megs of memory for 8 bits.  Still learning the maple syntax so things might improve.