Sweet

Just around the peek!
Best part!
Although Goldmans contest is the first time that DNA has been used to store the private key to cryptocurrencies, his point was to draw attention to the amazing potential of DNA as a long term storage option. This new method of storing information is already being investigated by companies like Microsoft, which wants to add DNA data storage to its cloud, and as a potential solution to humanitys mounting data problem.
Who knows, maybe DNA storage will be the popular new way to store the private keys to your cryptocurrency as well. But as Wuyts demonstrated, this DNA storage method is still
not
impervious to hacks.
He still needed the decode document even after the fact.
In the case of the Bitcoin challenge, there were a total of nine files contained in the DNA fragments. The files were encrypted with a keystream, which is a random series of characters that is included with the actual plain text message to obfuscate its meaning. The keystream code had been provided by Goldman in a document explaining the competition.
After running the code, Wuyts was able to combine the DNA fragments in the correct order to form one long piece of DNA. After working out some technical kinks, Wuyts was able to convert the DNA sequence into plain text, revealing the private key and unlocking the bitcoin (as well as some artefacts, including a drawing of James Joyce and the logo for the European Bioinformatics Institute). He had cracked the puzzle just five days before it was set to expire.