Speaking of, while the paper presents a solution preserving security guarantees, a quick skim of it doesn't seem to indicate they take into account the incentives around block propagation. If you wind up with a situation well large, centralized, mining pools earn more money as a part of this high-speed propagation game, even though in theory all the
work being done contributes towards 51% security, the overall result may be a serious negative due to the incentives towards centralization. Lately I've done some
work (
pdf) on that topic; it's a very important crypto-currency design consideration that I'd like to see other people analyzing as well.
You make a really good point. Decentralization is hurt at higher transaction rates, and better incentives are needed. We do mention it as a problem that remains at the very end of the paper (issues related to decentralization). The problem seems inherent to both our suggestion and to Bitcoin's current implementation.
Let me just say, that with small block sizes (i.e., when full bloom filters are implemented) it will be very hard to distribute blocks faster than the network does already. IMO, this is less of a problem than people think.