Post
Topic
Board Кодеры
Re: Математика и алгоритмы биткоина.
by
n00by
on 26/02/2019, 20:06:44 UTC
Интересно вот что. Откинув всю математику (которая только в 2-3 формулах существует) для эллиптической кривой, возможно ли зная точку на этой кривой и максимальную битовую длину числа "родителя" найти это число "родитель"?
Мне кажется это возможным. Математических доказательств обратного до сих пор ни у кого не появилось.
Сейчас вот и исследую это поле, ну и циклические группы вдобавок.

Я тут уже немного не понимаю. Точка на эллиптической кривой - это [x,y] - то есть публичный ключ.
Мы уже выяснили, что он делается умножением приватного ключа p на число G
По публичному ключу определить приватный - в настоящий момент мы не знаем как решать эту задачу, кроме
как перебором, который вряд ли закончится до угасания солнца.

Твой вопрос звучит так: если мы определенно знаем, что приватный ключ из диапазона [a..b] -
может ли это упростить нашу задачу? Для определенности, a=1
По-моему, нет.
Разумеется, с учетом того, что диапазон меньше - то и перебор у нас меньше и быстрее получится.
То есть при b=1000 нам надо перебрать только 1000 значений, а не 2256


Я просто выдвигаю гипотезы, которые сам же потом и стараюсь опровергнуть или принять на вооружение.

Гипотеза 1: В настоящее время существует ненулевое количество непотраченных выходов с приватных ключей в диапазоне чисел от 2^0 до 2^131+-1 (которые являются разницей характеристикой поля Р и порядком циклической группы n).

Примерами таких выходов могут служить вот эти: https://www.blockchain.com/btc/tx/5d45587cfd1d5b0fb826805541da7d94c61fe432259e68ee26f4a04544384164, а также многие другие из моего списка, но которые уже были использованы.

Гипотеза 2: Алгоритмы формирования публичного ключа "не теряют информацию", а следовательно, должны существовать алгоритмы восстановления приватного ключа. Прямой перебор наиболее уебищный из алгоритмов. Я бы вот этих вообще загнобил, увидев их на улице https://bitcointalk.org/index.php?topic=1306983.msg49486901#msg49486901

Ну и Гипотеза 3: Алгоритм взятия дискретного логарифма функции эллиптической кривой "легче" алгоритма нахождения коллизии sha256, либо старших алгоритмов хэширования.

Вот на этих гипотезах пытаюсь на пальцах (Ведь еще перипатетики поняли, что обсуждение даёт очень эффективные результаты(с)amaclin1) развить до чего то применимого.