Post
Topic
Board Bitcoin Discussion
Re: Bitcoin challenge transaction: ~100 BTC total bounty to solvers!
by
racminer
on 06/09/2019, 08:22:14 UTC
Here is the code with my changes
Code:

import time
import random
import gmpy2
import math
import sys

modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
order  = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

class Point:
    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

PG = Point(Gx,Gy)
Z = Point(0,0) # zero-point, infinite in real x,y - plane

# return (g, x, y) a*x + b*y = gcd(x, y)
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, x, y = egcd(b % a, a)
        return (g, y - (b // a) * x, x)

def rev(b, n = modulo):
    while b < 0:
        b += modulo
    g, x, _ = egcd(b, n)
    if g == 1:
        return x % n
       
def mul2(P, p = modulo):
    R = Point()
#    c = 3*P.x*P.x*rev(2*P.y, p) % p
    c = 3*P.x*P.x*gmpy2.invert(2*P.y, p) % p
    R.x = (c*c-2*P.x) % p
    R.y = (c*(P.x - R.x)-P.y) % p
    return R

def add(P, Q, p = modulo):
    R = Point()
    dx = Q.x - P.x
    dy = Q.y - P.y   
    c = dy * gmpy2.invert(dx, p) % p     
    #c = dy * rev(dx, p) % p     
    R.x = (c*c - P.x - Q.x) % p
    R.y = (c*(P.x - R.x) - P.y) % p
    return R # 6 sub, 3 mul, 1 inv

def mulk(k, P = PG, p = modulo):
    if k == 0: return Z
    elif k == 1: return P
    elif (k % 2 == 0):
        return mulk(k/2, mul2(P, p), p)
    else:
        return add(P, mulk( (k-1)/2, mul2(P, p), p), p)

def X2Y(X, p = modulo):
    if p % 4 != 3:
        print ('prime must be 3 modulo 4')
        return 0
    X = (X**3+7)%p
    pw = (p + 1) // 4
    Y = 1
    for w in range(256):
        if (pw >> w) & 1 == 1:
            tmp = X
            for k in range(w):
                tmp = (tmp**2)%p
            Y *= tmp
            Y %= p
    return Y

def comparator():
    A, Ak, B, Bk = [], [], [], []
    with open('tame.txt') as f:
        for line in f:
            L = line.split()
            a = int(L[0],16)
            b = int(L[1],16)
            A.append(a)
            Ak.append(b)
    with open('wild.txt') as f:
        for line in f:
            L = line.split()
            a = int(L[0],16)
            b = int(L[1],16)
            B.append(a)
            Bk.append(b)
    result = list(set(A) & set(B))
    if len(result) > 0:
        sol_kt = A.index(result[0])
        sol_kw = B.index(result[0])
        print ('total time: %.2f sec' % (time.time()-starttime))
        d = Ak[sol_kt] - Bk[sol_kw]
        print ('SOLVED: %64X' % d + '\n')
        file = open("results.txt",'a')
        file.write(('%X'%(Ak[sol_kt] - Bk[sol_kw])) + "\n")
        file.write("---------------\n")
        file.close()
        return True
    else:
        return False

def check(P, Pindex, DP_rarity, file2save):
    if P.x % (DP_rarity) == 0:
        file = open(file2save,'a')
        file.write(('%064X %064X'%(P.x,Pindex)) + "\n")
        file.close()
        return comparator()
    else:
        return False
   
P = [PG]
for k in range(255): P.append(mul2(P[k]))   
print ('P-table prepared')   

def search(a,b):
    global solved
    s=(a+b)>>1
    d=(b-a)
    problem=int(math.log(d,2))
#    print(a,b,s,d,'\n')
    DP_rarity = 1 << ((problem -  2*kangoo_power)//2 - 2)
    hop_modulo = ((problem-1)// 2) + kangoo_power
    T, t, dt = [], [], []
    W, w, dw = [], [], []
    for k in range(Nt):
        qtf= s
        qtr= random.randint(1,d)
 #       print('tame\n',qtf,qtr)
        qt=qtf+qtr
        t.append(qt) 
        T.append(mulk(t[k]))
        dt.append(0)
    for k in range(Nw):
        qw=(random.randint(1, d))
  #      print('wild\n',qw)
        w.append(qw)
        W.append(add(W0,mulk(w[k])))
        dw.append(0)
    print ('tame and wild herds are prepared')
    oldtime = time.time()
    starttime = oldtime
    Hops, Hops_old = 0, 0
    t0 = time.time()
    oldtime = time.time()
    starttime = oldtime
    while (1):
        for k in range(Nt):
            Hops += 1
            pw = T[k].x % hop_modulo
            dt[k] = 1 << pw
            solved = check(T[k], t[k], DP_rarity, "tame.txt")
            if solved: break
            t[k] += dt[k]
            T[k] = add(P[pw], T[k])
        if solved: break           
        for k in range(Nw):
            Hops += 1
            pw = W[k].x % hop_modulo
            dw[k] = 1 << pw
            solved = check(W[k], w[k], DP_rarity, "wild.txt")
            if solved: break
            w[k] += dw[k]
            W[k] = add(P[pw], W[k])
        if solved: break
        t1 = time.time()
        if (t1-t0) > 5:
            print ('%.3f h/s'%((Hops-Hops_old)/(t1-t0)))
            t0 = t1
            Hops_old = Hops
    hops_list.append(Hops)       
    print ('Hops:', Hops)       
    return 'sol. time: %.2f sec' % (time.time()-starttime)   

s=sys.argv[1]
sa = sys.argv[2]
sb = sys.argv[3]
sk = sys.argv[4]
a = int(sa, 16)
b = int(sb, 16)
kangoo_power = int(sk, 10)
Nt = Nw = 2**kangoo_power
X = int(s, 16)
Y = X2Y(X % (2**256))
if Y % 2 != (X >> 256) % 2: Y = modulo - Y
X = X % (2**256)
W0 = Point(X,Y)
starttime = oldtime = time.time()
Hops = 0
random.seed()

hops_list = []

solved = False
open("tame.txt",'w').close()
open("wild.txt",'w').close()
search(a,b)

Example (case 32)

python kang.py 0387dc70db1806cd9a9a76637412ec11dd998be666584849b3185f7f9313c8fd28 80000000 FFFFFFFF 3

(the last number 3 is the kangooro_power)

P-table prepared
tame and wild herds are prepared
total time: 0.21 sec
SOLVED:                                                         7D4FE747

('Hops:', 23072)