Post
Topic
Board Bitcoin Discussion
Merits 3 from 1 user
Re: Science Fair Project to trap Bitcoin private keys using Kangaroos!
by
MrFreeDragon
on 02/10/2019, 00:47:19 UTC
⭐ Merited by Welsh (3)
Here is another example of #40

#40 sqr(2^(bit-1))
python pollard-kangaroo-multi.py 40
//privkey = 1003651412950


#40 sqr(2^(bit-2))
python pollard-kangaroo-multi.py 8:3FFFFFFFFF 028dfd0e801ed8d495b6a0b68b38fba4f32d7423af363c717cca6c2ebd1e11a399
//privkey = 179017692118

Addfactor: 824633720832
//result1 = 1003651412950 true

824633720832 is just 0xC000000000
179017692118  is 0x29AE4933D6
1003651412950  is  0xE9AE4933D6

So 0xC000000000 is just the mid point of the normal #40 range 8000000000:FFFFFFFFFF
in other words the #40 sqr(2^(bit-2)) range you are mentioning is just the position of the private key from the mid-point.
You are not doing less work, you've just changed the origin.
Instead of working with the tame kangaroo matching the private key solution, you are working with the corresponding wild kangaroo.


Absolutely!


In general terms, it could be explaind like this: for bit key the range is from 2^(bit-1) up to 2^(bit)-1, where the total number of combinations (range length) is 2^(bit-1).
2^(bit-2) is a half of 2^(bit-1), so 2^(bit-1) + 2^(bit-2) is 1.5 * 2^(bit-1) --> the absolute middle of the total range for the (bit) key.