Post
Topic
Board Development & Technical Discussion
Re: Is it possible to generate every address from one seed
by
mpufatzis
on 17/10/2019, 13:47:58 UTC
Is it possible to calculate (theoretically) , how many common addresses could derive from the seeds?

If there are 2048^12 different seed combinations (in 12-word BIP39) and each has  2^256 keys then we have 6.3X10^116 different addresses.
We have altogether in Bitcoin 2^160=1,46x10^48 different addresses, which is a smaller number than the first one.

How many of them are common?

I would like to know is there a limit to how many bitcoin public keys be generated using one seed phrase. Is it unlimited?
It is unlimited

Quote
If it's not limited then this would mean that wallets with different seeds would cause a clash of their addresses. Am I right?
You really gave a good point however I think there must have an explanation. I will wait for others answer.

As pooya said it is limited to 2^256 (in practical terms only 255)

However this is a very big number.

Every seed can create billions of addresses in each derivation path. That means billions of addresses in change addresses, in legacy, segwit, native segwit, etc etc

A collision , which is what you are talking about is impossible in practical terms. Billions of addresses randomly generated is hard for our minds to understand.


From antonopoulos mastering bitcoin:

Quote
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.asciidoc#navigating-the-hd-wallet-tree-structure

The HD wallet tree structure offers tremendous flexibility. Each parent extended key can have 4 billion children: 2 billion normal children and 2 billion hardened children. Each of those children can have another 4 billion children, and so on. The tree can be as deep as you want, with an infinite number of generations.