Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
j2002ba2
on 16/02/2020, 13:13:12 UTC
Sorry for the post off topic ... but can someone develop a tool to solve this?

p = 115792089237316195423570985008687907852837564279074904382605163141518161494337
a = HuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuh?
b = HuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuh?

w = GF(p)

w (((a / b)))
w (((b / a)))

w= 12447032699845648078645791161909514142990644957498005805208944683777961822095
w= 66620152837833785920928131416087065201280002472666144035333386572317622196480


If you can develop any tool that does this ... I will send you 3 BTC

Well, that's easy:
Code:
0 < b < p
a = b * 12447032699845648078645791161909514142990644957498005805208944683777961822095 (mod p)
So, an obvious solution is a=12447032699845648078645791161909514142990644957498005805208944683777961822095, b=1
It's not that easy!
The correct is:
a = 76470300715912249562689990107401687364194232406198996658976353330269918489458
b = 64658408237276871767689061520961436408509493287485285377611016482361694763299

I need a tool that finds the a and b value correctly


The values I provided for a and b are correct, given the input. According to the puzzle there are a bit less than 2256 possible pairs.

The screenshot provides more information, one could see the tops of the numbers, and restrict a and b. A quick look makes it obvious where 7 5 4 1 6 are.