Etar, you are funny person.
Yes, you just overestimate the rate. It is known that due to pollard kanagaroo method it is possible to perform less bruteforce operations. And roughly it is square root from the total length.
You just count the operations which are not actually performed. You use the method which is good due to birthday paradox. However, due to this methond you just need less operations.
So, your actual speed is not 2.2Ph/s but the square root from this amount, i.e. approx. 47 Mh/s in total.
I did few optimizations (commited to github), I reached 13.6M giant steps of 2^30 per second on my Xeon X5647 2.93GHz with 12GB of RAM.
It solves the 16 keys of the odolvlobo's set in 3:35:53 from scratch, I mean without any precomputation.
If I convert to the Etar's unit: It does 14.6 PKey/s.
Newsflash: I, nullius, have written a very small shell script that can do over 100 trillion operations per second on a single core of an ancient 3.3 GHz CPU! Here is the source code, including a benchmark, on a Linux system (FreeBSD will be a bit different):
$ echo '1048576^1024' | time -p bc -sql
12425423456181365279925387080786307311597595610838347638850287747623\
60861068891428772905674656322752135427515054673539621055134262585183\
19758974258574370940046385769635382008544820357548872424501984530330\
07298954744930507666995488232800628320702554659038871038462856168892\
86081195063491219050898500215483033932486747164814339647481138414482\
46888917028564677545436961362035603246262743087461966109644786182741\
43113267232859737251775529839066894535312855298925318702786023730327\
19869958099828161372489304583433717069182227464187121063444543113687\
08508016817415834539561007557262362984166823937246086587688258356477\
00836976266833112093887575424667085600301886904838933510219463816130\
80902598605780629569631487856056084824428655665090823522085781848136\
90257281434662352060481338229879814647807435854905171792202651978347\
81576216598469678835525935558383051575769346443249751553902761298124\
16603376553195639027589983660665862094399483358459126504039467900670\
57848445654106692228540961696646160891611201176550731263658980952921\
79661180975723679821903326940014763241580326424148011608373928415839\
89799573086647874776450926010315260838864367653687522517200666183052\
78046681072569421716140184999814186049906737726847623187904023921869\
96493297393422826404482175417711937716534206615666157396727516750219\
91851182241223465341934177526160075853973517749105067707179469601845\
88330671948952814804211541112010786462301589154313085414717834325712\
13484577645520690543228926603184248994369361889663953324943538057692\
09142925292218241559518002462550357529467477707118089331738992523144\
12851389177004142395041260697284263133880780366217511217984043484829\
53325405978696911189665650780516493277780136150107415182697715538908\
88939125791581583722002310729942726531722583550670593647217988951143\
92521808675257335863861193806735924700446683310178995467034389623843\
34637501209612847511049916048620985432493518099051493506017025211609\
28445644828520351429402092953664848212010413254950535181316532179730\
47923723479492788069287202544924191902788739261046871261774192771595\
98592964369820978291410445759190143932392603554581408191522473988300\
78968537639501149013877800816286561791691358636572217216223056875928\
17092366529353468311118760692178408198029055674402652184529251245244\
02444158263061794917079395096000934259933755433146079126284408690042\
38324933687603968469583639260051178509345170832212772332066117998429\
78113094510577400457305062492992418480494715522786170957895839161090\
90679234697955146377040610964269301216587823655778069747692220154167\
70472400404041730870427533141385209154167773633401949758275582595580\
27019512304014991243449078715269261165419536452307568016928400885256\
23776177665575668603825365845156272635985606083707288176434594230550\
63821924320631190657490067933585520675018760684824866176435920685678\
63296909178438390152244400222647826063647022042540400075485011545999\
00189922038235751253299117681279273929701919536924732136567627766777\
04272072134504254916928323201471851352779331900325117027741482200181\
92390633227909351864687090818155037147671652619953709590048531015638\
67766944930820904022173238020823903767522872288256850258417608533098\
55710889239543384650225162736547201843957566299847464495309572962950\
42100547721511026509080617441578235291230797585596956723791898048054\
94393551619189003705862052625203047394451564786087506671990059650588\
42311700375195922932824912529284060788340967215716848525338227678858\
31002874066317264714873448648393414928386389626018123213950936837951\
21684530567458009683534343813278777818354930730330893607406282866925\
70103938566958665744906496118155917745662805567050399327736908498724\
43501504905974334406632067569317805770368874333462501444598418238980\
06216784554109955223039089466808238818647459407144324415209786295284\
85351735941250780778945454134699359309040121089264637439201843749119\
15314754026062773120219884614094334344501797490773975165855473939626\
21196092140724536492766178184954443337984925556703373475742985168021\
17883078934435817288096762052976538997318141223726183848768580350589\
51200814398904661260693065337549329110975358618511651893597017063680\
49524900823342544481257688601563369725945461590068162007616574017948\
20914771999143977962015245639168441997258587765506763767166710832557\
71563537685088458448130330050803042730162103745712401339034512242847\
09907124547717119635576597246015627200917541559241502943454956637305\
93422940574002248679572906693549431041616952024928826004627897641216\
24770138766738991174439422719554351731082128344265526579459209824096\
26455027947494463143520489497270848150431960954940852601300917188450\
83650067617931857392960118807817462708184256574641193504040258930891\
99839012206942405624559164212070339133396667428983146045638492533064\
03158572693118328234068512101574762869748178279573282408346844832649\
81933372857871230260859650454635805876968974210471318739872847006616\
00804924005284963470674464976828185259204561264958120568094640836916\
06837889924231208724461928878298859310406116888954935403060987516114\
18405904888301595242442948380076830270819668592368944902754888707385\
35204279102855717837455807640171757260262847344547505722807775030875\
94359812363435941904987045950244172865748098743633724075503552976884\
62784080317728680909109997117711330509573013343458585365228551129794\
81049484143528284230564635011417106533259692707337253646177547883252\
44686207799941805384827372103287633228795533147652926838400042889746\
45173471725823456319919737251506683847696994908372466903589572209409\
39398547770207563852186420979082694689548292795391486301958732319406\
71045025668526409833244577121221967764239502649649279354614518521237\
21869340311444598473461599506348960422697831023422091976250909540756\
61895743811394436416668441435649266854835929322540019881764717021766\
29212632259442546037609341731335269657620305531233672864805604650871\
85427651321373449080020221012906959833983342655018947268462816668916\
24294703168898855422382676912113909067081031599264999514935027284486\
39503819472854481747533388916773509467027133785685914059820113289324\
61413428025585667367075371092228092827478558233432174901584085487469\
46201737657601518077611371103354312093969464251033488916198666142138\
7618179306677175709500343297535791418285490176
real 0.01
user 0.01
sys 0.00
Well, you see, I realized that an exponentiation is just a bunch of multiplications. In this case, 1024 multiplications—and each of those multiplications is 1,047,576 additions. Thus, I have done 1,073,741,824 additions in 0.01 seconds. But wait! If expressed in tally-style unary units, each operand of each of those additions is 1,048,576 additions of the number 1. Thus, in
my units, this counts as 1,125,899,906,842,624 operations in 0.01 seconds. Ergo, >100 trillion operations per second
on a CPU that is almost nine years old.
A genius, am I.
Sadly, I am still only in the “tera” range; but surely, if I were to play semantic games a bit more, I could boost myself into the “peta” range as OP did—or even beyond him, into the “exa” range.
This is well know since the beginning of elliptic curve usage in crypto.
But we count the number of group operation really performed (not the size of the range divided by time).
Soooo... Let me get this straight: OP, who has a past history of prolific posting in shitcoin threads before some long post history gaps, suddenly “woke up” and started posting in Development & Technology with wild claims backed only by semantic games and insulting the intelligence of people who know far more than he does.
I did not bother to read the whole thread, which is now nearly 10 pages. Did I miss anything?
I will give a final explanation of how this works.
***************************************
Extraordinary claims backed by poorly-written explanations riddled with semantic games are the mark of either a crackpot or a scammer. Take your pick.
I think yo do not understand what are you talking...
Clearly you're looking to fool people who don't, sadly for you I'm not one of them. Though the fact that you don't recognize that I do is odd...