Please specify one thing. In the picture in the past, you can see that the beam from the star, passing near the star (the sun probably) - repulses. Is it?
I've always thought that large gravity objects attract a flow of photons to them, that's how gravity works in our everyday experience. That is why an electromagnetic wave (a flow of photons) cannot break out of the horizon of the black hole events.
I think the essence of space curvature by gravity in the picture is wrongly depicted.
No, the star doesn't repulse the light. The light travels in a straight line in spacetime, it's just that spacetime is curved around objects that have mass. A common way to visualise this is to place heavy objects on a rubber sheet. This is probably a better picture. If you imagine someone rolling a small ball from one side of the sheet to the other, the ball's path will curve as it passes close to the heavy object in the centre of the sheet. The ball itself travels in a straight line, it's just that the thing it's travelling on is curved.

If in electromagnetic interaction there is a rule of attraction of differently charged particles and a rule of repulsion of equally charged particles, we intuitively want to use the discovered effect - on gravity.
But gravity is a different field, with different properties. Gravity is always attractive, never repulsive.
large gravity objects attract a flow of photons to them, that's how gravity works in our everyday experience. That is why an electromagnetic wave (a flow of photons) cannot break out of the horizon of the black hole events.
If you look at that sheet above, the effect of a black hole is to produce such extreme curvature that eventually, in the centre, it drops vertically. Nothing can escape. Everything, photons includes, have to follow the curves of spacetime, the only difference with a photon is that because it is massless, it doesn't create its own small curvature. A photon in the above image might be an effectively weightless ping pong ball - but it still has to follow the contours of the sheet. When it passes through the event horizon of a black hole, it still falls in. And we have to remember also that we are talking about spacetime rather than space and time as separate things. Gravity doesn't just cause curvature of space, it also slows down time, which is why for a distant observer, something that falls towards the event horizon never actually seems to go through it and disappear, because the spacetime curvature is so great.