FYI: a table showing a rough-and-ready relationship between the shift setting and the number of digits in the primes tested (data taken from the publicly-accessible
gapdata.sqlite3.zip SQLite3 database file here
on mega.nz).
Shift | Primedigits |
16 | 82 |
17 | 83 |
18 | 83 |
19 | 83 |
20 | 84 |
21 | 84 |
22 | 84 |
23 | 84 |
24 | 85 |
25 | 85 |
26 | 85 |
27 | 86 |
28 | 86 |
30 | 87 |
31 | 87 |
32 | 87 |
34 | 88 |
35 | 88 |
36 | 88 |
37 | 88 |
37 | 89 |
39 | 89 |
40 | 90 |
41 | 90 |
42 | 90 |
43 | 90 |
45 | 91 |
46 | 91 |
47 | 92 |
48 | 92 |
49 | 92 |
50 | 93 |
50 | 92 |
55 | 94 |
57 | 95 |
57 | 94 |
58 | 95 |
60 | 95 |
60 | 96 |
63 | 96 |
63 | 97 |
64 | 97 |
69 | 98 |
72 | 99 |
74 | 100 |
75 | 100 |
88 | 104 |
90 | 105 |
95 | 106 |
96 | 106 |
100 | 107 |
100 | 108 |
105 | 109 |
110 | 111 |
112 | 111 |
115 | 112 |
120 | 114 |
120 | 114 |
121 | 114 |
122 | 114 |
123 | 114 |
123 | 115 |
125 | 115 |
126 | 115 |
127 | 116 |
128 | 116 |
130 | 116 |
132 | 117 |
144 | 121 |
150 | 122 |
150 | 123 |
156 | 124 |
180 | 132 |
187 | 134 |
188 | 134 |
189 | 134 |
190 | 135 |
191 | 135 |
192 | 135 |
200 | 138 |
225 | 145 |
250 | 153 |
255 | 154 |
256 | 154 |
256 | 155 |
286 | 164 |
300 | 168 |
301 | 168 |
308 | 170 |
328 | 176 |
330 | 177 |
348 | 182 |
350 | 183 |
351 | 183 |
356 | 185 |
360 | 186 |
380 | 192 |
381 | 192 |
382 | 192 |
383 | 193 |
391 | 195 |
392 | 195 |
392 | 196 |
404 | 199 |
409 | 200 |
409 | 201 |
412 | 201 |
412 | 202 |
414 | 202 |
415 | 202 |
416 | 203 |
437 | 209 |
440 | 210 |
441 | 210 |
442 | 210 |
442 | 211 |
443 | 211 |
444 | 211 |
445 | 212 |
446 | 212 |
447 | 212 |
448 | 212 |
449 | 213 |
450 | 213 |
451 | 213 |
468 | 218 |
472 | 219 |
472 | 220 |
473 | 220 |
474 | 220 |
476 | 221 |
477 | 221 |
478 | 221 |
479 | 222 |
480 | 222 |
481 | 222 |
482 | 223 |
483 | 223 |
502 | 229 |
504 | 229 |
506 | 230 |
508 | 230 |
509 | 231 |
510 | 231 |
511 | 231 |
512 | 232 |
540 | 240 |
541 | 240 |
542 | 241 |
543 | 241 |
544 | 241 |
546 | 242 |
547 | 242 |
574 | 250 |
576 | 251 |
602 | 259 |
607 | 260 |
608 | 260 |
608 | 261 |
630 | 267 |
634 | 268 |
640 | 270 |
698 | 287 |
699 | 288 |
700 | 288 |
702 | 289 |
720 | 294 |
732 | 298 |
760 | 306 |
762 | 307 |
764 | 307 |
764 | 308 |
765 | 308 |
767 | 308 |
790 | 315 |
794 | 316 |
794 | 317 |
797 | 317 |
798 | 318 |
799 | 318 |
828 | 327 |
829 | 327 |
830 | 327 |
831 | 327 |
831 | 328 |
832 | 328 |
860 | 336 |
888 | 345 |
896 | 347 |
920 | 354 |
920 | 355 |
986 | 374 |
987 | 375 |
988 | 375 |
991 | 376 |
992 | 376 |
1010 | 381 |
1011 | 382 |
1012 | 382 |
1014 | 383 |
1017 | 383 |
1019 | 384 |
1020 | 384 |
1020 | 385 |
1021 | 385 |
1022 | 385 |
1023 | 385 |
1023 | 386 |
1024 | 386 |
(I've found that the higher the shift setting, the lower the hashrate, unsurprising).
Gapcoin maxes out (nominally) at a shift of 1024 (
as set by Jonny Frey, to avoid DoS) with max prime digit length of 386, around number 10000 of 95000 in a sorted list of primedigit lengths taken from the prime gaps list (where the extreme upper regions see prime digit lengths of 100,000-200,000).
However, the criterion is
maximum known merit and gap size, not the number of digits in the prime and it's worth noting that the current record for the largest prime gap with best merit is still held by Gapcoin with a(n inferred, from "87-digit prime") shift of
30:
NEW PRIME GAP OF MAXIMUM KNOWN MERIT
The Gapcoin network (Jonnie Frey, developer), a Bitcoin derivative which employs a hashing algorithm to search for prime gaps of high merit, has discovered a new prime gap of maximum known merit, a gap of G=8350 following the 87-digit prime P1=293703234068022590158723766104419463425709075574811762098588798217895728858676728143227. The merit M=G/ln(P1) of this gap is M=41.93878373153988, the largest merit of any known prime gap, and the first prime gap to be discovered with a merit exceeding 40. The endpoints of the gap have been certified as primes deterministically, using the Akiyama-Kida-O'Hara UBASIC implementation (1988-1992) of the APRCL2 test, due to Adleman, Pomerance, Rumely, Cohen, H. W. Lenstra, and A. K. Lenstra (1984-1987).
Cheers
Graham