Post
Topic
Board Bitcoin Discussion
Re: How to steal Satoshi's stash?
by
jonald_fyookball
on 13/03/2014, 00:38:44 UTC

This was answered before and I'll answer this again 10^70Flops is something inconceivable today! I don't think we disagree with this point, and I've been repeating this for a dozens of times, today we cannot brute force a 256bit encryption heck not even close to 128bit this is not even a point.

Where we disagree is in terms of future prospect.  

Dude...bro... You are STILL missing the freaking point!

No one is questioning the advancement of technology
or even our ability to predict...but its essentially
PHYSICALLY IMPOSSIBLE to make a computer that
would do 10^70 FLOPS.

Let's do the math, shall we:


1. size of atom is roughly 0.0000000000001 meters

...therefore...

2. Number of atoms in a meter = 10^13
3. Number of atoms you could fit into a cubic meter = 10^39

...also...


4. speed of light = 299,792,458 metres per second

...thus...

5. time required for light to travel the distance of 1 meter =
1/299792458 seconds = .000000003335 seconds.

6. time required for light to travel the length of 1 atom =
0.000000000000000000003335 seconds.
 
7. If SOMEHOW, in this tiny timeframe,
a floating point operation could be
done using the space of a single atom,
you would get 2.99*10^20 FLOPS for each atom-size "bit".
(take the reciprocal of the above number)

8. So a cubic-meter sized computer filled with atoms
back to back, each calculating at the speed of light
would still only get you 2.99 *10^59 FLOPS.

9. to get to 10^70, you would need 33 billion of these
cubic meters sized computers.  Stacked end to end, these cubes
would go to the moon and back 42 times.  

See, it always comes down to the answer: 42.