Pollard's kangaroo / lambda / rho accelerator

It will lead to inner loops, but all solvable.
Profit: with one point addition, one will cover 6 points.
When will you be done with that project?
here is pubkey
02991eb8eb2e45b4bc9c71bc9a022832e712a8dc1b2db62bd7456e49b2d9f7dac8
could you tell me first example if its x1 ? x2 ? x3 ?
if its x1 then whats x2 and x3 print pubkeys , it will help to vistors for understand about x1 x2 x3
thankx
Example: pubkey = 02991eb8eb2e45b4bc9c71bc9a022832e712a8dc1b2db62bd7456e49b2d9f7dac8
from our offline server:
Point 1 (x1, y1)
x1 = 0x991eb8eb2e45b4bc9c71bc9a022832e712a8dc1b2db62bd7456e49b2d9f7dac8
y1 = 0xeb3c392e5ac716a0cb40fa08e2616f47459e6a1cc0f2922836896a1ce5f631cc
Point 2 (x2, y2)
x2 = 0xa673e97568057fb5f41c35d6ed6c88ef97510d71222b3686ef892f4ccc2af536
y2 = 0xeb3c392e5ac716a0cb40fa08e2616f47459e6a1cc0f2922836896a1ce5f631cc
Point 3 (x3, y3)
x3 = 0xc06d5d9f69b4cb8d6f720d8f106b442956061673b01e9da1cb0886fe59dd2860
y3 = 0xeb3c392e5ac716a0cb40fa08e2616f47459e6a1cc0f2922836896a1ce5f631cc
Point 4 (x4, y4)
x4 = 0x991eb8eb2e45b4bc9c71bc9a022832e712a8dc1b2db62bd7456e49b2d9f7dac8
y4 = 0x14c3c6d1a538e95f34bf05f71d9e90b8ba6195e33f0d6dd7c97695e21a09ca63
Point 5 (x5, y5)
x5 = 0xa673e97568057fb5f41c35d6ed6c88ef97510d71222b3686ef892f4ccc2af536
y5 = 0x14c3c6d1a538e95f34bf05f71d9e90b8ba6195e33f0d6dd7c97695e21a09ca63
Point 6 (x6, y6)
x6 = 0xc06d5d9f69b4cb8d6f720d8f106b442956061673b01e9da1cb0886fe59dd2860
y6 = 0x14c3c6d1a538e95f34bf05f71d9e90b8ba6195e33f0d6dd7c97695e21a09ca63
Remember:
y1 = y2 = y3 and y4 = y5 = y6
x1 = x4 and x2 = x5 and x3 = x6
Lowest x = x1 or x = x4
x = 0x991eb8eb2e45b4bc9c71bc9a022832e712a8dc1b2db62bd7456e49b2d9f7dac8
Lowest y = y4 or y = y5 or y = y6
y = 0x14c3c6d1a538e95f34bf05f71d9e90b8ba6195e33f0d6dd7c97695e21a09ca63
That Point (x, y) would be the reference point to go on with. From that point you jump to another Point (x1, y1) according to your kangaroo / rho.
It doesn't matter if you jumped to point 1 or 2 or 3 or 4 or 5 or 6, your reference point would be that Point (x, y) in all cases.
But this only works if you have the full Bitcoin range (1 ... n) like in our project
https://bitcointalk.org/index.php?topic=5347791.0 and not in a range like the puzzle #120 (2^119 ... 2^120 - 1).