I did not find any leading zero. that point is in the middle of secp256k1 subgroup.(additive inverse of middle of range point)
57896044618658097711785492504343953926418782139537452191302581570759080747168
0400000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c633f3979bf72ae8 202983dc989aec7f2ff2ed91bdd69ce02fc0700ca100e59ddf3
57896044618658097711785492504343953926418782139537452191302581570759080747169 (multiplicative inverse of 2 mod secp256k1 n)
0400000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63c0c686408d517 dfd67c2367651380d00d126e4229631fd03f8ff35eef1a61e3c
First off I have visual generator. You can set any scalar from secp256k1 range and it will generate subgroup in full correspondence to secp256k1 subgroup.
Secondly all group operation with points(addition, scalar_multiplication, subtraction, division) are isomorphic to (Zp,+,*) where we fix p as secp256k1 n.
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
lambda1 = 37718080363155996902926221483475020450927657555482586988616620542887997980018
lambda2 = 78074008874160198520644763525212887401909906723592317393988542598630163514318
def multiplicative_inverse(x, m):
return pow(x, m - 2, m)
def additive_inverse(a):
return N - a
def add(a, b): #addition
return (a + b) % N
def sub(a, b): #subtraction
return (a + additive_inverse(b)) % N
def mul(a, b): #multiplication
return (a * b) % N
def div(a, b): #division
return (a * multiplicative_inverse(b, N)) % N
print(div(1, 61168582499785340698020811768434254152333414806039741990912550463524917977698))
print(div(57896044618658097711785492504343953926418782139537452191302581570759080747169,
61168582499785340698020811768434254152333414806039741990912550463524917977698))
I did a mistake I don't see that your first point is just a hexadecimal representation of the point (G/2) i talked about
Secondly all group operation with points(addition, scalar_multiplication, subtraction, division) are isomorphic to (Zp,+,*) where we fix p as secp256k1 n.
Can u explain more how you fix p