I tried using the script you posted but I can't generate millions on an android phone, I changed many things but it returned an error everytime, I'm interested in this one because it uses no external libraries, and since iceland library doesn't support arm/mobile architecture.
What do I need to change to generate my desired range for public keys?
Maybe everything?

#!/usr/bin/python3
from hashlib import sha256, new
import binascii
import gmpy2
PCURVE = gmpy2.mpz(2 ** 256 - 2 ** 32 - 2 ** 9 - 2 ** 8 - 2 ** 7 - 2 ** 6 - 2 ** 4 - 1) # The proven prime
N = gmpy2.mpz("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141") # Number of points in the field
ACURVE = gmpy2.mpz(0)
BCURVE = gmpy2.mpz(7) # These two define the elliptic curve. y^2 = x^3 + Acurve * x + Bcurve
Gx = gmpy2.mpz(55066263022277343669578718895168534326250603453777594175500187360389116729240)
Gy = gmpy2.mpz(32670510020758816978083085130507043184471273380659243275938904335757337482424)
GPOINT = (Gx, Gy) # This is our generator point. Trillions of different ones possible
def modinv(a, n=PCURVE):
a = gmpy2.mpz(a)
n = gmpy2.mpz(n)
# MAXIMO COMUN DIVISOR: Extended Euclidean Algorithm/'division' in elliptic curves
lm, hm = gmpy2.mpz(1), gmpy2.mpz(0)
resto = a % n
high = n
while resto > gmpy2.mpz(1):
ratio = high // resto
nm = hm - lm * ratio
new = high - resto * ratio
lm, resto, hm, high = nm, new, lm, resto
return int(lm % n)
def ECadd(a, b):
a = (gmpy2.mpz(a[0]), gmpy2.mpz(a[1]))
b = (gmpy2.mpz(b[0]), gmpy2.mpz(b[1]))
LamAdd = ((b[1] - a[1]) * modinv(b[0] - a[0], PCURVE)) % PCURVE
x = (LamAdd * LamAdd - a[0] - b[0]) % PCURVE
y = (LamAdd * (a[0] - x) - a[1]) % PCURVE
return int(x), int(y)
def ECdouble(a):
a = (gmpy2.mpz(a[0]), gmpy2.mpz(a[1]))
Lam = ((3 * a[0] * a[0] + ACURVE) * modinv((2 * a[1]), PCURVE)) % PCURVE
x = (Lam * Lam - 2 * a[0]) % PCURVE
y = (Lam * (a[0] - x) - a[1]) % PCURVE
return int(x), int(y)
def EccMultiply(gen_point, scalar_hex):
scalar_hex = gmpy2.mpz(scalar_hex)
if scalar_hex == 0 or scalar_hex >= N:
raise Exception("Invalid Scalar/Private Key")
ScalarBin = str(bin(scalar_hex))[2:] # string binario sin el comienzo 0b
Q = gen_point
for i in range(1, len(ScalarBin)):
Q = ECdouble(Q)
if ScalarBin[i] == "1":
Q = ECadd(Q, gen_point)
return Q
def private_to_hex_publics(hex_private_key):
public_key = EccMultiply(GPOINT, hex_private_key)
public_uncompressed = f"04{hex(public_key[0])[2:].upper()}{hex(public_key[1])[2:].upper()}"
if public_key[1] % 2 == 1: # If the Y value for the Public Key is odd.
public_compressed = ("03" + str(hex(public_key[0])[2:]).zfill(64).upper())
else: # Or else, if the Y value is even.
public_compressed = ("02" + str(hex(public_key[0])[2:]).zfill(64).upper())
return public_uncompressed, public_compressed
def hash_256_from_hex_string_like_bytes(hexstring):
return sha256(bytes.fromhex(hexstring)).hexdigest()
def ripemd160_from_hex_string_like_bytes(hexstring):
return new('ripemd160', bytes.fromhex(hexstring)).hexdigest()
def b58encode(hex_string, expected_length=None):
v = binascii.unhexlify(hex_string)
alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
lev, number = gmpy2.mpz(1), gmpy2.mpz(0)
for char in reversed(v):
number += lev * char
lev = lev << 8 # 2^8
string = ""
while number:
number, modulo = divmod(number, 58)
string = alphabet[modulo] + string
if not expected_length:
return string
elif len(string) != expected_length:
raise Exception(f"b58encode: Expected length={expected_length} obtained length={len(string)}")
else:
return string
def sha256_get_checksum(hex_string_to_checksum):
hasha1 = hash_256_from_hex_string_like_bytes(hex_string_to_checksum)
hasha2 = hash_256_from_hex_string_like_bytes(hasha1)
return hasha2[:8].upper()
def sha_ripe_digest(hex_string_to_checksum):
hashc1 = hash_256_from_hex_string_like_bytes(hex_string_to_checksum)
hashc2 = ripemd160_from_hex_string_like_bytes(hashc1)
return hashc2.upper()
def wif_from_private(privkey):
# put 80 for bitcoin and concatenate with privkey
prepend = "80"
private_key_str = hex(privkey)[2:].zfill(64)
prepended = (prepend + private_key_str).upper()
compressed = (prepend + private_key_str + "01").upper()
if len(prepended) != 66 or len(compressed) != 68:
raise Exception("WIF conversion: Wrong prepended or compressed private key, length not 66")
uncompressed_checksum = sha256_get_checksum(prepended)
compressed_checksum = sha256_get_checksum(compressed)
private_key_uncompressed_checksum = prepended + uncompressed_checksum
private_key_compressed_checksum = compressed + compressed_checksum
private_key_WIF_uncompressed_Base58 = b58encode(private_key_uncompressed_checksum, 51)
private_key_WIF_compressed_Base58 = b58encode(private_key_compressed_checksum, 52)
print("PREPENDED:\t\t\t\t", prepended)
print("PRIV_UNCOMP+CHECKSUM:\t\t\t", private_key_uncompressed_checksum)
print("Private_key_WIF_uncompressed_Base58:\t", private_key_WIF_uncompressed_Base58)
print("PRIV_COMP+CHECKSUM:\t\t\t", private_key_compressed_checksum)
print("Private_key_WIF_compressed_Base58:\t", private_key_WIF_compressed_Base58)
return private_key_WIF_uncompressed_Base58, private_key_WIF_compressed_Base58
def hex_public_to_public_addresses(hex_publics):
uncompressed = hex_publics[0]
public_key_hashC_uncompressed = "00" + sha_ripe_digest(uncompressed)
checksum = sha256_get_checksum(public_key_hashC_uncompressed)
PublicKeyChecksumC = public_key_hashC_uncompressed + checksum
public_address_uncompressed = "1" + b58encode(PublicKeyChecksumC, 33)
print("Public address uncompressed:\t", public_address_uncompressed)
compressed = hex_publics[1]
PublicKeyVersionHashD = "00" + sha_ripe_digest(compressed)
compressed_checksum = sha256_get_checksum(PublicKeyVersionHashD)
PublicKeyChecksumC = PublicKeyVersionHashD + compressed_checksum
public_address_compressed = "1" + b58encode(PublicKeyChecksumC, 33)
print("Public address compressed:\t", public_address_compressed)
return public_address_uncompressed, public_address_compressed
def generate_public_keys_in_range(start_range, end_range):
current_scalar = start_range
while current_scalar <= end_range:
hex_private_key = hex(current_scalar)
hex_publics = private_to_hex_publics(hex_private_key)
print(f"Private Key: {hex_private_key}")
print(f"Uncompressed Public Key: {hex_publics[0]}")
print(f"Compressed Public Key: {hex_publics[1]}\n")
current_scalar += 1
if __name__ == "__main__":
start_range = int("20000000000000000", 16)
end_range = int("3FFFFFFFFFFFFFFFF", 16)
generate_public_keys_in_range(start_range, end_range)