Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
unclevito
on 30/09/2023, 15:43:29 UTC
Based on the information provided, it appears that the pattern for generating the private key (PVK) values for these Bitcoin addresses involves incrementing the PVK values by a specific sequence of integers. Let's calculate the PVK value for Address 15 and beyond based on the observed pattern:

Address 15: PVK value = Address 14's PVK value + 27
Address 15: PVK value = 10544 + 27
Address 15: PVK value = 10571

So, the PVK value for Address 15 is 10571.

You can continue this pattern to calculate the PVK values for addresses beyond Address 15 by adding the next integer in the sequence to the PVK value of the previous address.

What  is for 66 then ?  Grin

I can even help you further how to program this

import math

# Given list of numbers
numbers = [
    1, 3, 7, 8, 21, 49, 76, 224, 467, 514, 1155, 2683, 5216, 10544, 26867, 51510,
    95823, 198669, 357535, 863317, 1811764, 3007503, 5598802, 14428676, 33185509,
    54538862, 111949941, 227634408, 400708894, 1033162084, 2102388551, 3093472814,
    7137437912, 14133072157, 20112871792, 42387769980, 100251560595, 146971536592,
    323724968937, 1003651412950, 1458252205147, 2895374552463, 7409811047825,
    15404761757071, 19996463086597, 51408670348612, 119666659114170, 191206974700443,
    409118905032525, 611140496167764, 2058769515153876, 4216495639600700,
    6763683971478124, 9974455244496707, 30045390491869460, 44218742292676575,
    138245758910846492, 199976667976342049, 525070384258266191, 1135041350219496382,
    1425787542618654982, 3908372542507822062, 8993229949524469768,
    17799667357578236628, 30568377312064202855
]


Give me math formula that can calculate pattern for WIF 66 here ?
Whoever succeeds in doing this will receive a greater prize than the Nobel Prize.

p.s.
It doesn't even have to be an exact number.
That it is accurate to approximately +/- 8 decimal places.

you must be a very big joker if you think there is a pattern in the numbers you see up there

Tell  that to him.  Grin

No pattern
[1.0986122886681098, 0.8472978603872034, 0.13353139262452252, 0.9650808960435873, 0.8472978603872034, 0.4389130421757046, 1.0809127115687085, 0.7346832058138579, 0.095894007786268, 0.8096323575007283, 0.8428352274697302, 0.6647952531808645, 0.7038261531358003, 0.9353417899552472, 0.6508771958620958, 0.6207267760911943, 0.7291373836260231, 0.5875931361451538, 0.8815486874877241, 0.7412742883673946, 0.5068092100595862, 0.621442479911261, 0.9466649690007394, 0.8328956894510604, 0.4968002070443873, 0.7191383042437529, 0.7096890523067678, 0.565494345222092, 0.9471441493574098, 0.7104500196844334, 0.3862202442339999, 0.8360595282539585, 0.6831637178413494, 0.3528424038245319, 0.7454998789960143, 0.8608227563358781, 0.38255630630651183, 0.7896553545955527, 1.1315057477074362, 0.37359383611238073, 0.6858758829076486, 0.9396904576187914, 0.7318717272660606, 0.26087874561462243, 0.9442514298159388, 0.8449031946466405, 0.46864644180339354, 0.7606493566316814, 0.4013210422240192, 1.2145368832080123, 0.7168958843120095, 0.47256334190535654, 0.38845964139438394, 1.1026819053976311, 0.38643947837596926, 1.1398842299982945, 0.3691677366484285, 0.9653316192351014, 0.7708920423038066, 0.22805524036508018, 1.0083967352657979, 0.8333510086282203, 0.682707702906626, 0.540786284089215]