I managed to prove experimentally on 5 different computers that everything is in seed. You can speed up solving the puzzle by a million years if you know the correct seed. And the best thing is that you can always achieve the same result in the same time. Proof is in the pudding.
PC-1
- [Kangaroo]: Wed Oct 11 11:51:00 2023
- [Puzzle]: 50
- [Lower range limit]: 562949953421312
- [Upper range limit]: 1125899906842623
- [Xcoordinate]: f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
- [Ycoordinate]: eb3dfcc04c320b55c529291478550be6072977c0c86603fb2e4f5283631064fb
- Using 4 CPU cores for parallel search
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- PUZZLE SOLVED: Wed Oct 11 11:51:18 2023, total time: 18.38 sec
- WIF: -0000000000000000000000000000000000000000000000000022bd43c2e9354
PC-2
- [Kangaroo]: Wed Oct 11 11:53:38 2023
- [Puzzle]: 50
- [Lower range limit]: 562949953421312
- [Upper range limit]: 1125899906842623
- [Xcoordinate]: f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6
- [Ycoordinate]: eb3dfcc04c320b55c529291478550be6072977c0c86603fb2e4f5283631064fb
- Using 12 CPU cores for parallel search
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- [Random seed]: b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
- PUZZLE SOLVED: Wed Oct 11 11:53:57 2023, total time: 18.96 sec
- WIF: -0000000000000000000000000000000000000000000000000022bd43c2e9354
It will solve Puzzle 50 in 18 seconds regardless of which computer i was using.
Code:
import sys
import os
import time
import random
import hashlib
import gmpy2
from gmpy2 import mpz
from functools import lru_cache
import multiprocessing
from multiprocessing import Pool, cpu_count
# Constants
MODULO = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
ORDER = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141)
GX = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
GY = gmpy2.mpz(0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
# Define Point class
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
PG = Point(GX, GY)
ZERO_POINT = Point(0, 0)
# Function to multiply a point by 2
def multiply_by_2(P, p=MODULO):
c = gmpy2.f_mod(3 * P.x * P.x * gmpy2.powmod(2 * P.y, -1, p), p)
R = Point()
R.x = gmpy2.f_mod(c * c - 2 * P.x, p)
R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p)
return R
# Function to add two points
def add_points(P, Q, p=MODULO):
dx = Q.x - P.x
dy = Q.y - P.y
c = gmpy2.f_mod(dy * gmpy2.invert(dx, p), p)
R = Point()
R.x = gmpy2.f_mod(c * c - P.x - Q.x, p)
R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p)
return R
# Function to calculate Y-coordinate from X-coordinate
@lru_cache(maxsize=None)
def x_to_y(X, y_parity, p=MODULO):
Y = gmpy2.mpz(3)
tmp = gmpy2.mpz(1)
while Y > 0:
if Y % 2 == 1:
tmp = gmpy2.f_mod(tmp * X, p)
Y >>= 1
X = gmpy2.f_mod(X * X, p)
X = gmpy2.f_mod(tmp + 7, p)
Y = gmpy2.f_div(gmpy2.add(p, 1), 4)
tmp = gmpy2.mpz(1)
while Y > 0:
if Y % 2 == 1:
tmp = gmpy2.f_mod(tmp * X, p)
Y >>= 1
X = gmpy2.f_mod(X * X, p)
Y = tmp
if Y % 2 != y_parity:
Y = gmpy2.f_mod(-Y, p)
return Y
# Function to compute a table of points
def compute_point_table():
points = [PG]
for k in range(255):
points.append(multiply_by_2(points[k]))
return points
POINTS_TABLE = compute_point_table()
# Global event to signal all processes to stop
STOP_EVENT = multiprocessing.Event()
# Function to check and compare points for potential solutions
def check(P, Pindex, DP_rarity, A, Ak, B, Bk):
check = gmpy2.f_mod(P.x, DP_rarity)
if check == 0:
message = f"\r[+] [Pindex]: {mpz(Pindex)}"
messages = []
messages.append(message)
output = "\033[01;33m" + ''.join(messages) + "\r"
sys.stdout.write(output)
sys.stdout.flush()
A.append(mpz(P.x))
Ak.append(mpz(Pindex))
return comparator(A, Ak, B, Bk)
else:
return False
# Function to compare two sets of points and find a common point
def comparator(A, Ak, B, Bk):
global STOP_EVENT
result = set(A).intersection(set(B))
if result:
sol_kt = A.index(next(iter(result)))
sol_kw = B.index(next(iter(result)))
difference = Ak[sol_kt] - Bk[sol_kw]
HEX = "%064x" % difference
t = time.ctime()
total_time = time.time() - starttime
print(f"\033[32m[+] PUZZLE SOLVED: {t}, total time: {total_time:.2f} sec \033[0m")
print(f"\033[32m[+] WIF: \033[32m {HEX} \033[0m")
with open("KEYFOUNDKEYFOUND.txt", "a") as file:
file.write("\n\nSOLVED " + t)
file.write(f"\nTotal Time: {total_time:.2f} sec")
file.write("\nPrivate Key (decimal): " + str(difference))
file.write("\nPrivate Key (hex): " + HEX)
file.write(
"\n-------------------------------------------------------------------------------------------------------------------------------------\n"
)
STOP_EVENT.set() # Set the stop event to signal all processes
# Memoization for point multiplication
ECMULTIPLY_MEMO = {}
# Function to multiply a point by a scalar
def ecmultiply(k, P=PG, p=MODULO):
if k == 0:
return ZERO_POINT
elif k == 1:
return P
elif k % 2 == 0:
if k in ECMULTIPLY_MEMO:
return ECMULTIPLY_MEMO[k]
else:
result = ecmultiply(k // 2, multiply_by_2(P, p), p)
ECMULTIPLY_MEMO[k] = result
return result
else:
return add_points(P, ecmultiply((k - 1) // 2, multiply_by_2(P, p), p))
# Recursive function to multiply a point by a scalar
def mulk(k, P=PG, p=MODULO):
if k == 0:
return ZERO_POINT
elif k == 1:
return P
elif k % 2 == 0:
return mulk(k // 2, multiply_by_2(P, p), p)
else:
return add_points(P, mulk((k - 1) // 2, multiply_by_2(P, p), p))
# Generate a list of powers of two for faster access
@lru_cache(maxsize=None)
def generate_powers_of_two(hop_modulo):
return [mpz(1 << pw) for pw in range(hop_modulo)]
# Worker function for point search
def search_worker(
Nt, Nw, puzzle, kangaroo_power, starttime, lower_range_limit, upper_range_limit
):
global STOP_EVENT
#Random seed Config
#constant_prefix = b'' #back to no constant
#constant_prefix = b'\xbc\x9b\x8cd\xfc\xa1?\xcf' #Puzzle 50 seed - 10s
constant_prefix = b'\xbc\x9b\x8cd\xfc\xa1?\xcf'
prefix_length = len(constant_prefix)
length = 8
ending_length = length - prefix_length
with open("/dev/urandom", "rb") as urandom_file:
ending_bytes = urandom_file.read(ending_length)
random_bytes = constant_prefix + ending_bytes
print(f"[+] [Random seed]: {random_bytes}")
random.seed(random_bytes)
t = [
mpz(
lower_range_limit
+ mpz(random.randint(0, upper_range_limit - lower_range_limit))
)
for _ in range(Nt)
]
T = [mulk(ti) for ti in t]
dt = [mpz(0) for _ in range(Nt)]
w = [
mpz(random.randint(0, upper_range_limit - lower_range_limit)) for _ in range(Nt)
]
W = [add_points(W0, mulk(wk)) for wk in w]
dw = [mpz(0) for _ in range(Nw)]
Hops, Hops_old = 0, 0
oldtime = time.time()
starttime = oldtime
while True:
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = powers_of_two[pw]
solved = check(T[k], t[k], DP_rarity, T, t, W, w)
if solved:
STOP_EVENT.set()
break
t[k] = mpz(t[k]) + dt[k] # Use mpz here
T[k] = add_points(POINTS_TABLE[pw], T[k])
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = powers_of_two[pw]
solved = check(W[k], w[k], DP_rarity, W, w, T, t)
if solved:
STOP_EVENT.set()
break
w[k] = mpz(w[k]) + dw[k] # Use mpz here
W[k] = add_points(POINTS_TABLE[pw], W[k])
if STOP_EVENT.is_set():
break
# Main script
if __name__ == "__main__":
os.system("clear")
t = time.ctime()
sys.stdout.write("\033[01;33m")
sys.stdout.write(f"[+] [Kangaroo]: {t}" + "\n")
sys.stdout.flush()
# Configuration for the puzzle
puzzle = 50
compressed_public_key = "03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6" # Puzzle 50
lower_range_limit = 2 ** (puzzle - 1)
upper_range_limit = (2 ** puzzle) - 1
kangaroo_power = puzzle // 8
Nt = Nw = (2 ** kangaroo_power // puzzle) * puzzle + 8
DP_rarity = 8 * puzzle
hop_modulo = (puzzle // 2) + 8
# Precompute powers of two for faster access
powers_of_two = generate_powers_of_two(hop_modulo)
T, t, dt = [], [], []
W, w, dw = [], [], []
if len(compressed_public_key) == 66:
X = mpz(compressed_public_key[2:66], 16)
Y = x_to_y(X, mpz(compressed_public_key[:2]) - 2)
else:
print("[error] pubkey len(66/130) invalid!")
print(f"[+] [Puzzle]: {puzzle}")
print(f"[+] [Lower range limit]: {lower_range_limit}")
print(f"[+] [Upper range limit]: {upper_range_limit}")
print("[+] [Xcoordinate]: %064x" % X)
print("[+] [Ycoordinate]: %064x" % Y)
W0 = Point(X, Y)
starttime = oldtime = time.time()
Hops = 0
process_count = cpu_count()
print(f"[+] Using {process_count} CPU cores for parallel search")
# Create a pool of worker processes
pool = Pool(process_count)
results = pool.starmap(
search_worker,
[
(
Nt,
Nw,
puzzle,
kangaroo_power,
starttime,
lower_range_limit,
upper_range_limit,
)
]
* process_count,
)
pool.close()
pool.join()