Post
Topic
Board Development & Technical Discussion
Merits 2 from 1 user
Re: Replacing P with N on elliptic curves
by
j2002ba2
on 21/12/2023, 09:07:55 UTC
⭐ Merited by ETFbitcoin (2)
There is an elliptic curve equation, which is taken modulo P. This produces a group with N points.

Now you'd like to change the modulo to N, and get a group with P points.

Congratulations! There are many many such curves.

But there's a caveat.

Taking something modulo P does not produce an integer. Instead the result is a "number modulo P". The "something" could be any of infinite numbers, both positive, negative, rational, irrational, etc.

So the real curve could be y^2 = x^3 + kPx + B, which reduces to y^2 = x^3 + B (mod P), and you could vary k in order to get the desired number of points modulo N. Or in a rare cases y^2 = x^3 + kPx + B + mP, if more flexibility is needed.

That means: the curves in different modulo are not related in any way.

Any curve in one modulo is equivalent to any curve in any other modulo.

Zero bits of information are gained here.