Just answer the question, how much storage or RAM do you think one would need, solving a 115 bit range key, using a DP of 25? According to your previous calculations...
What exactly is wrong with my calculations, to be precise?... You were specifically asking something about #130 with a specific DP. Now you want to know why #115 is a manageable effort? OK...
Keyspace: 114 bits.
T size: 52 bits
W size: 52 bits
DP = 25, so Tdp size = 27 bits
Wdp size = 27 bits
Required memory for hashmap: 2*2**27 bits entries = 268 million entries * sizeof(jump entry)
Requires steps: 2*2**52 + numKang * 2**25
Probability(success) = 1 - (1 - 2**-52) ** (2**52) = 63%
I do not believe you understand how a hash map needs to work, in order to check for a collision.
In simplest terms, you will need some sort of a sorted list. Optimally, a balanced binary search tree. That one has O(log n) lookup and insert complexity. So, for a DP 25, that is filled with 2**28 entries, it requires 28 steps for a single lookup, IN BEST CASE scenario, when your search tree is balanced.
The memory requirement difference between #115 with DP 25 and #130 with DP 32 is orders of magnitudes higher!
It doesn't matter if you use a single CPU with few TB of RAM or many CPUs each with less RAM each. You will end up with the same problem of having to merge / query the DP "central table" / search tree / sorted list, call it whatever you want.
Good luck with your "files".