Post
Topic
Board Development & Technical Discussion
Topic OP
Searching for K nonce in Binary
by
krashfire
on 12/04/2024, 08:49:21 UTC
I had made a little change in my code. im just hoping i could receive some advice on whether my method here is more efficient or sound?

originally, i had searh the k nonce using hexadecimal and after 6 weeks, i got the right nonce. i got really lucky by the way because i was told that 6 weeks was really fast. but.. im hoping to go faster.

so my question is, does doing the search in binary help to recover k nonce faster ?

if it does, please take a look at my code in sagemath, and see what i might have miss out or can improve to make it much better?

and while im here, i was told the u1 value some sort of give a "hint" on the k nonce. i realise that it just really is the real mod n of k nonce only but its not k nonce itself,

so my 3rd question is, after finding out the value of u1, how can i use this input to make the search for the k nonce faster?

Code:
import random
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

E = EllipticCurve(GF(p), [0, 7])

G = E.point( (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8))   # Base point

def egcd(a, b):

    if a == 0:

        return (b, 0, 1)

    else:

        g, y, x = egcd(b % a, a)

        return (g, x - (b // a) * y, y)
def modinv(a, m):

    g, x, y = egcd(a, m)

    if g != 1:

        raise Exception('modular inverse does not exist')

    else:

        return x % m
def make_public(r,s,z):
    R = E.lift_x(Integer(r))
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    #R=u1*G + u2*public_key
    #pub= R*modinv(u2,n) - u1*modinv(u2,n)%n
    u_n2=modinv(u2,n)%n
    u_n1=- u1*modinv(u2,n)%n
   
    pub=u_n1*G + u_n2*R
    pub2=u_n1*G + u_n2*(-R)
    return pub,pub2

def verify(r, s,z,public_key):
    w = int(modinv(s, n))
    u1 = int((z * w) % n)
    u2 = int((r * w) % n)
    D=u1*G + u2*public_key
    x,y=D.xy()
    x=int(x)

    if (r % n) == (x % n):
        print( "signature matches")
         
    else:
        print("invalid signature")

r=0x
s=0x
z=0x

pub1,pub2=make_public(r,s,z)
print("public_key1",pub1)
print("pub1_x=",hex(pub1.xy()[0]))
print("public_key2",pub2)
print("pub2_x=",hex(pub2.xy()[0]))
verify(r,s,z,pub1)
verify(r,s,z,pub2)
print()

# Function to check if a point's x-coordinate matches r
def check_k(k):
    P = k * G
    return P.xy() == r

def search_k():
    # Iterate to find the correct k in binary format
    for i in range(1, 2**256):
        k = (r * i + z) * modinv(s, n) % n
        k_bin = format(k, '0256b')  # Convert k to 256-bit binary format
        print("Binary",k_bin)
        if check_k(k):
            print(f"Found correct k in binary format: {k_bin}")
            private_key = (s * k - z) * modinv(r, n) % n
            print(f"Private Key: {private_key}")
            break

search_k()