Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Denevron
on 30/03/2025, 12:29:24 UTC
can be called a mutagen Grin

It's not that simple, but it speeds up the process, you've noticed it yourself)

you can add it to Cyclon as a new method, and there you just don’t calculate the puzzle range, but enter the key by which the bits will change, and it’s better not in random mode, but in sequential mode, because the random mode will loop and that’s it, and you will be forever, say, chasing in 30 bits, and you won’t find it, and it will be, say, in 33 bits



Code:
import time
import multiprocessing
import secp256k1 as ice
import random
from math import comb
import numpy as np

# Configuration
TARGET_ADDR = "1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum"  # Puzzle 20
BASE_KEY = "000000000000000000000000000000000000000000000000000000000005749f"  # Puzzle 19 Private Key
PUZZLE_NUM = 20
WORKERS = multiprocessing.cpu_count()

# Historical flip counts
FLIP_TABLE = {
    20:8, 21:8, 22:9, 23:9, 24:10, 25:11, 26:12, 27:13, 28:14, 29:15,
    30:16, 31:17, 32:18, 33:19, 34:20, 35:21, 36:22, 37:23, 38:24, 39:25,
    40:26, 41:27, 42:28, 43:29, 44:30, 45:31, 46:32, 47:33, 48:34, 49:35,
    50:36, 51:37, 52:38, 53:39, 54:40, 55:41, 56:42, 57:43, 58:44, 59:45,
    60:46, 61:47, 62:48, 63:49, 64:50, 65:51, 66:52, 67:53
}

def predict_flips(puzzle_num):
    """Predict flip count using linear regression with bounds"""
    if puzzle_num in FLIP_TABLE:
        return FLIP_TABLE[puzzle_num]
   
    # Linear regression
    x = np.array(list(FLIP_TABLE.keys()))
    y = np.array(list(FLIP_TABLE.values()))
    coeffs = np.polyfit(x, y, 1)
    predicted = round(coeffs[0] * puzzle_num + coeffs[1])
   
    # Apply bounds (50-60% of bits)
    bit_length = puzzle_num
    lower = max(8, int(bit_length * 0.5))
    upper = min(int(bit_length * 0.6), bit_length-5)
    return min(max(predicted, lower), upper)

def mutate_key(base_int, flip_positions):
    """Ultra-fast bit flipping using XOR mask"""
    flip_mask = sum(1 << bit for bit in flip_positions)
    return base_int ^ flip_mask

def worker(base_int, bit_length, flip_count, results, stop_event):
    checked = 0
    bit_positions = list(range(bit_length))
    start_time = time.time()
   
    while not stop_event.is_set():
        # Generate random flip positions
        flip_pos = random.sample(bit_positions, flip_count)
       
        # Create mutated key
        priv_int = mutate_key(base_int, flip_pos)
        checked += 1
       
        # Generate address
        addr = ice.privatekey_to_address(0, True, priv_int)
       
        if addr == TARGET_ADDR:
            hex_key = "%064x" % priv_int
            actual_flips = bin(base_int ^ priv_int).count('1')
            results.put((hex_key, checked, actual_flips))
            stop_event.set()
            return
           
        # Progress update
        if checked % 10000 == 0:
            elapsed = time.time() - start_time
            speed = checked/elapsed if elapsed > 0 else 0
            print(f"Checked {checked:,} | {speed:,.0f} keys/sec", end='\r')

def parallel_search():
    bit_length = PUZZLE_NUM
    base_int = int(BASE_KEY, 16)
    flip_count = predict_flips(PUZZLE_NUM)
    total_combs = comb(bit_length, flip_count)
   
    print(f"\nSearching Puzzle {PUZZLE_NUM} (256-bit)")
    print(f"Base Key: {BASE_KEY}")
    print(f"Target: {TARGET_ADDR}")
    print(f"Predicted Flip Count: {flip_count} bits")
    print(f"Total Possible Combinations: 2^{int(np.log2(total_combs)):,}")
    print(f"Using {WORKERS} workers...\n")
   
    manager = multiprocessing.Manager()
    results = manager.Queue()
    stop_event = manager.Event()
   
    start_time = time.time()
   
    with multiprocessing.Pool(WORKERS) as pool:
        for _ in range(WORKERS):
            pool.apply_async(worker, (base_int, bit_length, flip_count, results, stop_event))
       
        try:
            hex_key, checked, actual_flips = results.get(timeout=86400)  # 24h timeout
            stop_event.set()
           
            elapsed = time.time() - start_time
            print(f"\nFound in {elapsed/3600:.2f} hours")
            print(f"Private Key: {hex_key}")
            print(f"Actual Bit Flips: {actual_flips}")
            print(f"Keys Checked: {checked:,}")
            print(f"Speed: {checked/elapsed:,.0f} keys/sec")
           
            solution_file = f"puzzle_{PUZZLE_NUM}_solution.txt"
            with open(solution_file, "w") as f:
                f.write(hex_key)
            print(f"\nSolution saved to {solution_file}")
            return hex_key
           
        except:
            print("\nKey not found in 24 hours - try adjusting flip count ±2")
            return None
        finally:
            pool.terminate()

if __name__ == "__main__":
    flip_count = predict_flips(PUZZLE_NUM)  # First calculate flip_count
    print(f"Predicted flip count for {PUZZLE_NUM}: {flip_count} bits")
    solution = parallel_search()

Here is my Python version.
I still think this is useless. If someone convinces me otherwise. Grin



you don't need to use random, so you won't find a match, only if you guess the number of bits  Cheesy