Post
Topic
Board Italiano (Italian)
Merits 3 from 1 user
Re: Un modello logistico del prezzo di Bitcoin
by
gbianchi
on 18/04/2025, 15:57:52 UTC
⭐ Merited by fillippone (3)
se volete farvi delle implementazioni/esperimenti/farvi venire un po' di mal di testa,  vi posto un po' di codice

1) codice python della logistica asimmetrica

Code:
LL + (-LL + LU)*(exp((S*(Ix - x)/(-LL + LU) + c*(exp(c) + 1)**((-exp(c) - 1)*exp(-c)))*(exp(c) + 1)**((exp(c) + 1)*exp(-c))) + 1)**(-exp(-c))


2) codice python della derivata della logistica asimmetrica

Code:
S*(exp(c) + 1)**((exp(c) + 1)*exp(-c))*(exp((S*(Ix - x)/(-LL + LU) + c*(exp(c) + 1)**((-exp(c) - 1)*exp(-c)))*(exp(c) + 1)**((exp(c) + 1)*exp(-c))) + 1)**(-exp(-c))*exp(-c)*exp((S*(Ix - x)/(-LL + LU) + c*(exp(c) + 1)**((-exp(c) - 1)*exp(-c)))*(exp(c) + 1)**((exp(c) + 1)*exp(-c)))/(exp((S*(Ix - x)/(-LL + LU) + c*(exp(c) + 1)**((-exp(c) - 1)*exp(-c)))*(exp(c) + 1)**((exp(c) + 1)*exp(-c))) + 1)

3) Codice LaTeX della derivata

Code:
\frac{S \left(e^{c} + 1\right)^{\left(e^{c} + 1\right) e^{- c}} \left(e^{\left(\frac{S \left(Ix - x\right)}{- LL + LU} + c \left(e^{c} + 1\right)^{\left(- e^{c} - 1\right) e^{- c}}\right) \left(e^{c} + 1\right)^{\left(e^{c} + 1\right) e^{- c}}} + 1\right)^{- e^{- c}} e^{- c} e^{\left(\frac{S \left(Ix - x\right)}{- LL + LU} + c \left(e^{c} + 1\right)^{\left(- e^{c} - 1\right) e^{- c}}\right) \left(e^{c} + 1\right)^{\left(e^{c} + 1\right) e^{- c}}}}{e^{\left(\frac{S \left(Ix - x\right)}{- LL + LU} + c \left(e^{c} + 1\right)^{\left(- e^{c} - 1\right) e^{- c}}\right) \left(e^{c} + 1\right)^{\left(e^{c} + 1\right) e^{- c}}} + 1}