Post
Topic
Board Actualité et News
Re: Secousses cryptographiques
by
jtz
on 13/05/2014, 08:00:48 UTC
Il semblerait que leur découverte affecte bien la résolution d'ECDSA et permet sensiblement de réduire la complexité d'origine de L(1/3) à L(1/4+ε)  pour une courbe sur un corps Fqk.

Je suppute de l'abstract,  n'ayant pas accès à l'article complet.

Quote
The difficulty of computing discrete logarithms in fields  Fqk depends on the relative sizes of k and q. Until recently all the cases had a sub-exponential complexity of type L(1/3), similar to the factorization problem. In 2013, Joux designed a new algorithm with a complexity of L(1/4 + ε) in small characteristic. In the same spirit, we propose in this article another heuristic algorithm that provides a quasi-polynomial complexity when q is of size at most comparable with k. By quasi-polynomial, we mean a runtime of n O(logn) where n is the bit-size of the input. For larger values of q that stay below the limit Lqk(1/3) , our algorithm loses its quasi-polynomial nature, but still surpasses the Function Field Sieve. Complexity results in this article rely on heuristics which have been checked experimentally.

Source : http://link.springer.com/chapter/10.1007/978-3-642-55220-5_1#page-1