Point is though, this works in a completely different way to Bitcoin and the nothing at stake problem doesn't apply here because it works so differently.
Bitcoin is not a POS coin so it's a bit weird to say that a thing that is completely inapplicable to Bitcoin is inapplicable to your thing because its different from Bitcoin, especially if that reason is "secret sauce".
The simulation example is probably the hardest to convincingly wave away. Say tomorrow half the NXT value holders decide to sell their coin. Six months after that their old NXT keys fall into evil hands. The evil people create a fork of the NXT chain and in seconds mine it up to the current day. How do existing nodes know not to reorg onto the new one? If there is a threshold where they won't reorg, what prevents the malicious parties from producing blocks right at the threshold and making one half of the network stick to one chain, one half to another? And most importantly, a NXT node that has been offline for seven months comes back, how does it know what chain to follow? If there are protections here what assumptions do they make and how might they fail? Costless simulation isn't the only problem that arises out of nothing at stake, but its one of the simplest seemingly hard to resolve.
If you're going to not only claim that you've solved those cases but that the solution is both "secret sauce" and trade-off free I'm going to have to say bullshit. If someone else is making those kinds of claims to you and you buy them, I've got a nice bridge to sell you.
