Search content
Sort by

Showing 20 of 26 results by Geshma
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 26/08/2025, 06:54:55 UTC
Just sharing new software by Presage0007:

Hey! I just pushed a new CUDACyclone release: it now supports both full-random (affine permutation, no overlap) and deterministic scanning modes. As expected, full-random gives a slightly lower Mkeys/s than purely sequential, but the throughput is still very reasonable for random. I also added email notifications via msmtp when a hit is found. I modified the Readme for more explanations. Grab it here: https://github.com/Presage0007/CUDACyclone/

https://i.ibb.co/jPHdt8CP/rdm-dtm.jpg

so every time a key is found it is send by email?
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 02/08/2025, 14:16:27 UTC
This puzzle is very strange. If it's for measuring the world's brute forcing capacity, 161-256 are just a waste (RIPEMD160 entropy is filled by 160, and by all of P2PKH Bitcoin). The puzzle creator could improve the puzzle's utility without bringing in any extra funds from outside - just spend 161-256 across to the unsolved portion 51-160, and roughly treble the puzzle's content density.

If on the other hand there's a pattern to find... well... that's awfully open-ended... can we have a hint or two? Cheesy

I am the creator.

You are quite right, 161-256 are silly.  I honestly just did not think of this.  What is especially embarrassing, is this did not occur to me once, in two years.  By way of excuse, I was not really thinking much about the puzzle at all.

I will make up for two years of stupidity.  I will spend from 161-256 to the unsolved parts, as you suggest.  In addition, I intend to add further funds.  My aim is to boost the density by a factor of 10, from 0.001*length(key) to 0.01*length(key).  Probably in the next few weeks.  At any rate, when I next have an extended period of quiet and calm, to construct the new transaction carefully.

A few words about the puzzle.  There is no pattern.  It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty).  It is simply a crude measuring instrument, of the cracking strength of the community.

Finally, I wish to express appreciation of the efforts of all developers of new cracking tools and technology.  The "large bitcoin collider" is especially innovative and interesting!

Found Hidden Patterns in Private Keys:
https://github.com/syedsohailahmedsam/BTC_32_PUZZLE.git


This is not a blind brute-force tool.
It is an intelligently constrained search engine for keys that might satisfy the structure of Puzzles.
While still computationally difficult, filtering improves performance and feasibility.

🔧 Want to adjust the rules? Just modify the is_valid_hex_key() logic in either script.

Custom Filtering Rules were derived from previously found private keys of puzzles 1-70. You can see found private keys in "numbers.txt".

In our analysis of all known solved Bitcoin cryptographic puzzles (Puzzles 1–70), we discovered that certain patterns have never appeared in any of the revealed private keys.

❌ "No private keys have..."
We exclude any hex private key that contains:

❌ Triple Characters
No valid puzzle solution has ever had three identical hex characters in a row.
Example: "aaa", "666", "fff", "000" → all are invalid

❌ Repeated Double Pairs
While a key might have a pair like "aa" or "ff", no key ever repeats the same pair.
Example: "112211" → "11" appears twice → invalid

❌ Double Characters from a Restricted Set (6, 9, a, d)
Based on prior solutions, no valid key has ever had a double of these characters.
Disallowed patterns: "66", "99", "aa", "dd"

🧠 Why This Matters
These exclusions are not random — they are based on actual solved keys from the Bitcoin Puzzle series.

Zero to negligible instances of these patterns have appeared in the first 70 puzzles.

This drastically reduces the keyspace, making brute-force search more intelligent and focused.

📌 Summary Line
“No private keys have triples, repeated double pairs, or double 6/9/a/d — filtered to match historical puzzle patterns.”

Paths of first 70 private keys:
All paths from root for each Private Key:
Private Key: 1
Path: [1]
Depth: 0

Private Key: 3
Path: [1, 3]
Depth: 1

Private Key: 7
Path: [1, 3, 7]
Depth: 2

Private Key: 8
Path: [1, 2, 4, 8]
Depth: 3

Private Key: 21
Path: [1, 2, 5, 10, 21]
Depth: 4

Private Key: 49
Path: [1, 3, 6, 12, 24, 49]
Depth: 5

Private Key: 76
Path: [1, 2, 4, 9, 19, 38, 76]
Depth: 6

Private Key: 224
Path: [1, 3, 7, 14, 28, 56, 112, 224]
Depth: 7

Private Key: 467
Path: [1, 3, 7, 14, 29, 58, 116, 233, 467]
Depth: 8

Private Key: 514
Path: [1, 2, 4, 8, 16, 32, 64, 128, 257, 514]
Depth: 9

Private Key: 1155
Path: [1, 2, 4, 9, 18, 36, 72, 144, 288, 577, 1155]
Depth: 10

Private Key: 2683
Path: [1, 2, 5, 10, 20, 41, 83, 167, 335, 670, 1341, 2683]
Depth: 11

Private Key: 5216
Path: [1, 2, 5, 10, 20, 40, 81, 163, 326, 652, 1304, 2608, 5216]
Depth: 12

Private Key: 10544
Path: [1, 2, 5, 10, 20, 41, 82, 164, 329, 659, 1318, 2636, 5272, 10544]
Depth: 13

Private Key: 26867
Path: [1, 3, 6, 13, 26, 52, 104, 209, 419, 839, 1679, 3358, 6716, 13433, 26867]
Depth: 14

Private Key: 51510
Path: [1, 3, 6, 12, 25, 50, 100, 201, 402, 804, 1609, 3219, 6438, 12877, 25755, 51510]
Depth: 15

Private Key: 95823
Path: [1, 2, 5, 11, 23, 46, 93, 187, 374, 748, 1497, 2994, 5988, 11977, 23955, 47911, 95823]
Depth: 16

Private Key: 198669
Path: [1, 3, 6, 12, 24, 48, 97, 194, 388, 776, 1552, 3104, 6208, 12416, 24833, 49667, 99334, 198669]
Depth: 17

Private Key: 357535
Path: [1, 2, 5, 10, 21, 43, 87, 174, 349, 698, 1396, 2793, 5586, 11172, 22345, 44691, 89383, 178767, 357535]
Depth: 18

Private Key: 863317
Path: [1, 3, 6, 13, 26, 52, 105, 210, 421, 843, 1686, 3372, 6744, 13489, 26978, 53957, 107914, 215829, 431658, 863317]
Depth: 19

Private Key: 1811764
Path: [1, 3, 6, 13, 27, 55, 110, 221, 442, 884, 1769, 3538, 7077, 14154, 28308, 56617, 113235, 226470, 452941, 905882, 1811764]
Depth: 20

Private Key: 3007503
Path: [1, 2, 5, 11, 22, 45, 91, 183, 367, 734, 1468, 2937, 5874, 11748, 23496, 46992, 93984, 187968, 375937, 751875, 1503751, 3007503]
Depth: 21

Private Key: 5598802
Path: [1, 2, 5, 10, 21, 42, 85, 170, 341, 683, 1366, 2733, 5467, 10935, 21870, 43740, 87481, 174962, 349925, 699850, 1399700, 2799401, 5598802]
Depth: 22

Private Key: 14428676
Path: [1, 3, 6, 13, 27, 55, 110, 220, 440, 880, 1761, 3522, 7045, 14090, 28181, 56362, 112724, 225448, 450896, 901792, 1803584, 3607169, 7214338, 14428676]
Depth: 23

Private Key: 33185509
Path: [1, 3, 7, 15, 31, 63, 126, 253, 506, 1012, 2025, 4050, 8101, 16203, 32407, 64815, 129630, 259261, 518523, 1037047, 2074094, 4148188, 8296377, 16592754, 33185509]
Depth: 24

Private Key: 54538862
Path: [1, 3, 6, 13, 26, 52, 104, 208, 416, 832, 1664, 3328, 6657, 13315, 26630, 53260, 106521, 213042, 426084, 852169, 1704339, 3408678, 6817357, 13634715, 27269431, 54538862]
Depth: 25

Private Key: 111949941
Path: [1, 3, 6, 13, 26, 53, 106, 213, 427, 854, 1708, 3416, 6832, 13665, 27331, 54663, 109326, 218652, 437304, 874608, 1749217, 3498435, 6996871, 13993742, 27987485, 55974970, 111949941]
Depth: 26

Private Key: 227634408
Path: [1, 3, 6, 13, 27, 54, 108, 217, 434, 868, 1736, 3473, 6946, 13893, 27787, 55574, 111149, 222299, 444598, 889196, 1778393, 3556787, 7113575, 14227150, 28454301, 56908602, 113817204, 227634408]
Depth: 27

Private Key: 400708894
Path: [1, 2, 5, 11, 23, 47, 95, 191, 382, 764, 1528, 3057, 6114, 12228, 24457, 48914, 97829, 195658, 391317, 782634, 1565269, 3130538, 6261076, 12522152, 25044305, 50088611, 100177223, 200354447, 400708894]
Depth: 28

Private Key: 1033162084
Path: [1, 3, 7, 15, 30, 61, 123, 246, 492, 985, 1970, 3941, 7882, 15764, 31529, 63059, 126118, 252236, 504473, 1008947, 2017894, 4035789, 8071578, 16143157, 32286315, 64572630, 129145260, 258290521, 516581042, 1033162084]
Depth: 29

Private Key: 2102388551
Path: [1, 3, 7, 15, 31, 62, 125, 250, 501, 1002, 2004, 4009, 8019, 16039, 32079, 64159, 128319, 256639, 513278, 1026556, 2053113, 4106227, 8212455, 16424910, 32849821, 65699642, 131399284, 262798568, 525597137, 1051194275, 2102388551]
Depth: 30

Private Key: 3093472814
Path: [1, 2, 5, 11, 23, 46, 92, 184, 368, 737, 1475, 2950, 5900, 11800, 23601, 47202, 94405, 188810, 377621, 755242, 1510484, 3020969, 6041939, 12083878, 24167756, 48335512, 96671025, 193342050, 386684101, 773368203, 1546736407, 3093472814]
Depth: 31

Private Key: 7137437912
Path: [1, 3, 6, 13, 26, 53, 106, 212, 425, 850, 1701, 3403, 6806, 13613, 27227, 54454, 108908, 217817, 435634, 871269, 1742538, 3485077, 6970154, 13940308, 27880616, 55761233, 111522467, 223044934, 446089869, 892179739, 1784359478, 3568718956, 7137437912]
Depth: 32

Private Key: 14133072157
Path: [1, 3, 6, 13, 26, 52, 105, 210, 421, 842, 1684, 3369, 6739, 13478, 26956, 53913, 107826, 215653, 431307, 862614, 1725228, 3450457, 6900914, 13801828, 27603656, 55207313, 110414626, 220829252, 441658504, 883317009, 1766634019, 3533268039, 7066536078, 14133072157]
Depth: 33

Private Key: 20112871792
Path: [1, 2, 4, 9, 18, 37, 74, 149, 299, 599, 1198, 2397, 4795, 9590, 19181, 38362, 76724, 153449, 306898, 613796, 1227592, 2455184, 4910369, 9820738, 19641476, 39282952, 78565905, 157131810, 314263621, 628527243, 1257054487, 2514108974, 5028217948, 10056435896, 20112871792]
Depth: 34

Private Key: 42387769980
Path: [1, 2, 4, 9, 19, 39, 78, 157, 315, 631, 1263, 2526, 5053, 10106, 20212, 40424, 80848, 161696, 323393, 646786, 1293572, 2587144, 5174288, 10348576, 20697153, 41394306, 82788613, 165577226, 331154452, 662308905, 1324617811, 2649235623, 5298471247, 10596942495, 21193884990, 42387769980]
Depth: 35

Private Key: 100251560595
Path: [1, 2, 5, 11, 23, 46, 93, 186, 373, 746, 1493, 2987, 5975, 11950, 23901, 47803, 95607, 191214, 382429, 764858, 1529717, 3059434, 6118869, 12237739, 24475478, 48950957, 97901914, 195803829, 391607658, 783215317, 1566430634, 3132861268, 6265722537, 12531445074, 25062890148, 50125780297, 100251560595]
Depth: 36

Private Key: 146971536592
Path: [1, 2, 4, 8, 17, 34, 68, 136, 273, 547, 1095, 2190, 4380, 8760, 17520, 35040, 70081, 140162, 280325, 560651, 1121303, 2242607, 4485215, 8970430, 17940861, 35881722, 71763445, 143526891, 287053782, 574107564, 1148215129, 2296430259, 4592860518, 9185721037, 18371442074, 36742884148, 73485768296, 146971536592]
Depth: 37

Private Key: 323724968937
Path: [1, 2, 4, 9, 18, 37, 75, 150, 301, 602, 1205, 2411, 4823, 9647, 19295, 38591, 77182, 154364, 308728, 617456, 1234912, 2469825, 4939651, 9879302, 19758604, 39517208, 79034416, 158068832, 316137664, 632275329, 1264550659, 2529101319, 5058202639, 10116405279, 20232810558, 40465621117, 80931242234, 161862484468, 323724968937]
Depth: 38

Private Key: 1003651412950
Path: [1, 3, 7, 14, 29, 58, 116, 233, 467, 934, 1869, 3738, 7477, 14955, 29911, 59822, 119644, 239289, 478578, 957156, 1914313, 3828626, 7657252, 15314505, 30629010, 61258020, 122516041, 245032083, 490064166, 980128332, 1960256665, 3920513331, 7841026663, 15682053327, 31364106654, 62728213309, 125456426618, 250912853237, 501825706475, 1003651412950]
Depth: 39

Private Key: 1458252205147
Path: [1, 2, 5, 10, 21, 42, 84, 169, 339, 679, 1358, 2716, 5432, 10864, 21729, 43459, 86918, 173837, 347674, 695348, 1390697, 2781395, 5562790, 11125581, 22251162, 44502325, 89004651, 178009302, 356018604, 712037209, 1424074419, 2848148838, 5696297676, 11392595352, 22785190705, 45570381410, 91140762821, 182281525643, 364563051286, 729126102573, 1458252205147]
Depth: 40

Private Key: 2895374552463
Path: [1, 2, 5, 10, 21, 42, 84, 168, 337, 674, 1348, 2696, 5393, 10786, 21572, 43144, 86288, 172577, 345155, 690311, 1380622, 2761244, 5522488, 11044977, 22089954, 44179909, 88359819, 176719638, 353439276, 706878552, 1413757105, 2827514211, 5655028422, 11310056845, 22620113691, 45240227382, 90480454764, 180960909528, 361921819057, 723843638115, 1447687276231, 2895374552463]
Depth: 41

Private Key: 7409811047825
Path: [1, 3, 6, 13, 26, 53, 107, 215, 431, 862, 1725, 3450, 6900, 13801, 27603, 55207, 110414, 220829, 441659, 883318, 1766636, 3533273, 7066546, 14133092, 28266185, 56532371, 113064743, 226129487, 452258975, 904517950, 1809035900, 3618071800, 7236143601, 14472287202, 28944574405, 57889148811, 115778297622, 231556595244, 463113190489, 926226380978, 1852452761956, 3704905523912, 7409811047825]
Depth: 42

Private Key: 15404761757071
Path: [1, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1793, 3586, 7173, 14346, 28693, 57387, 114774, 229548, 459097, 918195, 1836390, 3672781, 7345562, 14691125, 29382251, 58764502, 117529005, 235058010, 470116020, 940232040, 1880464081, 3760928163, 7521856326, 15043712653, 30087425306, 60174850613, 120349701227, 240699402454, 481398804908, 962797609816, 1925595219633, 3851190439267, 7702380878535, 15404761757071]
Depth: 43

Private Key: 19996463086597
Path: [1, 2, 4, 9, 18, 36, 72, 145, 290, 581, 1163, 2327, 4655, 9311, 18623, 37246, 74492, 148985, 297970, 595941, 1191882, 2383764, 4767528, 9535056, 19070113, 38140226, 76280453, 152560906, 305121812, 610243624, 1220487248, 2440974497, 4881948995, 9763897991, 19527795983, 39055591966, 78111183932, 156222367864, 312444735728, 624889471456, 1249778942912, 2499557885824, 4999115771649, 9998231543298, 19996463086597]
Depth: 44

Private Key: 51408670348612
Path: [1, 2, 5, 11, 23, 46, 93, 187, 374, 748, 1496, 2992, 5984, 11969, 23939, 47878, 95756, 191512, 383024, 766048, 1532097, 3064195, 6128391, 12256782, 24513564, 49027128, 98054257, 196108514, 392217028, 784434056, 1568868113, 3137736227, 6275472454, 12550944909, 25101889818, 50203779637, 100407559274, 200815118549, 401630237098, 803260474197, 1606520948394, 3213041896788, 6426083793576, 12852167587153, 25704335174306, 51408670348612]
Depth: 45

Private Key: 119666659114170
Path: [1, 3, 6, 13, 27, 54, 108, 217, 435, 870, 1741, 3482, 6965, 13931, 27862, 55724, 111448, 222896, 445793, 891586, 1783172, 3566344, 7132688, 14265377, 28530754, 57061509, 114123019, 228246038, 456492077, 912984154, 1825968309, 3651936618, 7303873236, 14607746473, 29215492947, 58430985895, 116861971791, 233723943582, 467447887164, 934895774329, 1869791548658, 3739583097317, 7479166194635, 14958332389271, 29916664778542, 59833329557085, 119666659114170]
Depth: 46

Private Key: 191206974700443
Path: [1, 2, 5, 10, 21, 43, 86, 173, 347, 695, 1391, 2782, 5564, 11129, 22259, 44518, 89037, 178075, 356150, 712301, 1424602, 2849205, 5698411, 11396823, 22793647, 45587295, 91174590, 182349180, 364698361, 729396723, 1458793447, 2917586894, 5835173788, 11670347576, 23340695153, 46681390307, 93362780615, 186725561230, 373451122461, 746902244923, 1493804489847, 2987608979694, 5975217959388, 11950435918777, 23900871837555, 47801743675110, 95603487350221, 191206974700443]
Depth: 47

Private Key: 409118905032525
Path: [1, 2, 5, 11, 23, 46, 93, 186, 372, 744, 1488, 2976, 5953, 11906, 23813, 47627, 95255, 190510, 381021, 762043, 1524086, 3048173, 6096346, 12192693, 24385387, 48770774, 97541548, 195083096, 390166192, 780332384, 1560664768, 3121329536, 6242659073, 12485318146, 24970636293, 49941272586, 99882545173, 199765090347, 399530180695, 799060361391, 1598120722783, 3196241445566, 6392482891133, 12784965782266, 25569931564532, 51139863129065, 102279726258131, 204559452516262, 409118905032525]
Depth: 48

Private Key: 611140496167764
Path: [1, 2, 4, 8, 17, 34, 69, 138, 277, 555, 1111, 2223, 4446, 8893, 17786, 35573, 71146, 142292, 284584, 569168, 1138337, 2276675, 4553351, 9106703, 18213406, 36426812, 72853624, 145707248, 291414497, 582828994, 1165657989, 2331315979, 4662631959, 9325263918, 18650527837, 37301055674, 74602111348, 149204222697, 298408445394, 596816890788, 1193633781577, 2387267563155, 4774535126310, 9549070252621, 19098140505242, 38196281010485, 76392562020970, 152785124041941, 305570248083882, 611140496167764]
Depth: 49

Private Key: 2058769515153876
Path: [1, 3, 7, 14, 29, 58, 117, 234, 468, 936, 1872, 3744, 7489, 14979, 29959, 59918, 119836, 239672, 479344, 958689, 1917378, 3834757, 7669514, 15339028, 30678056, 61356112, 122712225, 245424451, 490848902, 981697805, 1963395610, 3926791220, 7853582440, 15707164880, 31414329760, 62828659520, 125657319040, 251314638080, 502629276160, 1005258552321, 2010517104642, 4021034209284, 8042068418569, 16084136837139, 32168273674279, 64336547348558, 128673094697117, 257346189394234, 514692378788469, 1029384757576938, 2058769515153876]
Depth: 50

Private Key: 4216495639600700
Path: [1, 3, 7, 14, 29, 59, 119, 239, 479, 958, 1917, 3834, 7669, 15339, 30679, 61358, 122716, 245432, 490864, 981729, 1963458, 3926917, 7853835, 15707670, 31415340, 62830681, 125661362, 251322724, 502645449, 1005290899, 2010581798, 4021163596, 8042327193, 16084654386, 32169308773, 64338617547, 128677235095, 257354470190, 514708940380, 1029417880761, 2058835761523, 4117671523047, 8235343046095, 16470686092190, 32941372184380, 65882744368760, 131765488737521, 263530977475043, 527061954950087, 1054123909900175, 2108247819800350, 4216495639600700]
Depth: 51

Private Key: 6763683971478124
Path: [1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1537, 3075, 6151, 12303, 24606, 49212, 98424, 196849, 393698, 787396, 1574792, 3149585, 6299171, 12598343, 25196686, 50393372, 100786745, 201573490, 403146980, 806293960, 1612587921, 3225175843, 6450351687, 12900703375, 25801406751, 51602813503, 103205627006, 206411254012, 412822508024, 825645016049, 1651290032099, 3302580064198, 6605160128396, 13210320256793, 26420640513586, 52841281027172, 105682562054345, 211365124108691, 422730248217382, 845460496434765, 1690920992869531, 3381841985739062, 6763683971478124]
Depth: 52

Private Key: 9974455244496707
Path: [1, 2, 4, 8, 17, 35, 70, 141, 283, 566, 1133, 2267, 4535, 9071, 18143, 36286, 72573, 145147, 290294, 580589, 1161179, 2322358, 4644717, 9289435, 18578870, 37157741, 74315482, 148630965, 297261930, 594523861, 1189047723, 2378095446, 4756190893, 9512381786, 19024763573, 38049527147, 76099054294, 152198108589, 304396217178, 608792434356, 1217584868712, 2435169737425, 4870339474851, 9740678949703, 19481357899407, 38962715798815, 77925431597630, 155850863195261, 311701726390522, 623403452781044, 1246806905562088, 2493613811124176, 4987227622248353, 9974455244496707]
Depth: 53

Private Key: 30045390491869460
Path: [1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1707, 3415, 6831, 13663, 27326, 54652, 109304, 218608, 437217, 874435, 1748871, 3497743, 6995487, 13990975, 27981950, 55963900, 111927801, 223855603, 447711206, 895422413, 1790844827, 3581689654, 7163379309, 14326758619, 28653517238, 57307034476, 114614068953, 229228137907, 458456275815, 916912551631, 1833825103263, 3667650206527, 7335300413054, 14670600826108, 29341201652216, 58682403304432, 117364806608865, 234729613217730, 469459226435460, 938918452870920, 1877836905741841, 3755673811483682, 7511347622967365, 15022695245934730, 30045390491869460]
Depth: 54

Private Key: 44218742292676575
Path: [1, 2, 4, 9, 19, 39, 78, 157, 314, 628, 1256, 2513, 5027, 10054, 20108, 40216, 80433, 160866, 321733, 643467, 1286934, 2573869, 5147739, 10295478, 20590956, 41181912, 82363825, 164727651, 329455303, 658910606, 1317821213, 2635642426, 5271284853, 10542569707, 21085139414, 42170278828, 84340557656, 168681115313, 337362230626, 674724461252, 1349448922505, 2698897845011, 5397795690023, 10795591380047, 21591182760095, 43182365520191, 86364731040383, 172729462080767, 345458924161535, 690917848323071, 1381835696646142, 2763671393292285, 5527342786584571, 11054685573169143, 22109371146338287, 44218742292676575]
Depth: 55

Private Key: 138245758910846492
Path: [1, 3, 7, 15, 30, 61, 122, 245, 491, 982, 1964, 3929, 7858, 15716, 31433, 62866, 125733, 251467, 502935, 1005870, 2011740, 4023481, 8046962, 16093924, 32187849, 64375698, 128751396, 257502792, 515005584, 1030011168, 2060022337, 4120044675, 8240089351, 16480178703, 32960357406, 65920714812, 131841429625, 263682859250, 527365718501, 1054731437002, 2109462874005, 4218925748011, 8437851496023, 16875702992046, 33751405984093, 67502811968186, 135005623936373, 270011247872747, 540022495745494, 1080044991490988, 2160089982981976, 4320179965963952, 8640359931927905, 17280719863855811, 34561439727711623, 69122879455423246, 138245758910846492]
Depth: 56

Private Key: 199976667976342049
Path: [1, 2, 5, 11, 22, 44, 88, 177, 355, 710, 1420, 2841, 5683, 11367, 22734, 45469, 90938, 181877, 363755, 727510, 1455021, 2910043, 5820087, 11640174, 23280348, 46560696, 93121392, 186242785, 372485570, 744971141, 1489942282, 2979884564, 5959769129, 11919538258, 23839076516, 47678153032, 95356306064, 190712612129, 381425224259, 762850448518, 1525700897036, 3051401794072, 6102803588145, 12205607176290, 24411214352580, 48822428705161, 97644857410323, 195289714820646, 390579429641293, 781158859282586, 1562317718565172, 3124635437130344, 6249270874260689, 12498541748521378, 24997083497042756, 49994166994085512, 99988333988171024, 199976667976342049]
Depth: 57

Private Key: 525070384258266191
Path: [1, 3, 7, 14, 29, 58, 116, 233, 466, 932, 1865, 3730, 7461, 14923, 29846, 59693, 119387, 238774, 477548, 955097, 1910194, 3820389, 7640779, 15281559, 30563118, 61126237, 122252475, 244504951, 489009902, 978019804, 1956039608, 3912079216, 7824158433, 15648316867, 31296633735, 62593267471, 125186534943, 250373069886, 500746139772, 1001492279545, 2002984559090, 4005969118181, 8011938236362, 16023876472725, 32047752945450, 64095505890901, 128191011781803, 256382023563606, 512764047127213, 1025528094254426, 2051056188508852, 4102112377017704, 8204224754035409, 16408449508070818, 32816899016141636, 65633798032283273, 131267596064566547, 262535192129133095, 525070384258266191]
Depth: 58

Private Key: 1135041350219496382
Path: [1, 3, 7, 15, 31, 63, 126, 252, 504, 1008, 2016, 4032, 8064, 16129, 32259, 64519, 129039, 258078, 516157, 1032314, 2064628, 4129256, 8258512, 16517025, 33034051, 66068102, 132136204, 264272408, 528544816, 1057089632, 2114179265, 4228358530, 8456717060, 16913434121, 33826868242, 67653736485, 135307472970, 270614945940, 541229891881, 1082459783763, 2164919567526, 4329839135053, 8659678270107, 17319356540214, 34638713080428, 69277426160857, 138554852321715, 277109704643431, 554219409286863, 1108438818573726, 2216877637147453, 4433755274294907, 8867510548589815, 17735021097179630, 35470042194359261, 70940084388718523, 141880168777437047, 283760337554874095, 567520675109748191, 1135041350219496382]
Depth: 59

Private Key: 1425787542618654982
Path: [1, 2, 4, 9, 19, 39, 79, 158, 316, 633, 1266, 2532, 5065, 10130, 20261, 40523, 81046, 162093, 324186, 648373, 1296746, 2593492, 5186984, 10373969, 20747939, 41495878, 82991757, 165983515, 331967031, 663934062, 1327868125, 2655736250, 5311472500, 10622945000, 21245890000, 42491780001, 84983560002, 169967120005, 339934240011, 679868480023, 1359736960047, 2719473920094, 5438947840189, 10877895680379, 21755791360758, 43511582721516, 87023165443033, 174046330886066, 348092661772132, 696185323544265, 1392370647088530, 2784741294177060, 5569482588354121, 11138965176708242, 22277930353416484, 44555860706832968, 89111721413665936, 178223442827331872, 356446885654663745, 712893771309327491, 1425787542618654982]
Depth: 60

Private Key: 3908372542507822062
Path: [1, 3, 6, 13, 27, 54, 108, 216, 433, 867, 1735, 3471, 6942, 13885, 27770, 55541, 111082, 222165, 444330, 888661, 1777322, 3554644, 7109288, 14218576, 28437152, 56874305, 113748611, 227497223, 454994447, 909988894, 1819977789, 3639955578, 7279911157, 14559822315, 29119644630, 58239289261, 116478578523, 232957157046, 465914314092, 931828628184, 1863657256368, 3727314512737, 7454629025474, 14909258050948, 29818516101896, 59637032203793, 119274064407587, 238548128815174, 477096257630349, 954192515260698, 1908385030521397, 3816770061042794, 7633540122085589, 15267080244171179, 30534160488342359, 61068320976684719, 122136641953369439, 244273283906738878, 488546567813477757, 977093135626955515, 1954186271253911031, 3908372542507822062]
Depth: 61

Private Key: 8993229949524469768
Path: [1, 3, 7, 15, 31, 62, 124, 249, 499, 998, 1996, 3993, 7987, 15975, 31950, 63900, 127801, 255602, 511205, 1022411, 2044823, 4089647, 8179294, 16358589, 32717179, 65434359, 130868719, 261737439, 523474879, 1046949758, 2093899517, 4187799035, 8375598070, 16751196141, 33502392282, 67004784565, 134009569131, 268019138262, 536038276524, 1072076553049, 2144153106099, 4288306212198, 8576612424396, 17153224848793, 34306449697587, 68612899395175, 137225798790351, 274451597580702, 548903195161405, 1097806390322811, 2195612780645622, 4391225561291245, 8782451122582490, 17564902245164980, 35129804490329960, 70259608980659920, 140519217961319840, 281038435922639680, 562076871845279360, 1124153743690558721, 2248307487381117442, 4496614974762234884, 8993229949524469768]
Depth: 62

Private Key: 17799667357578236628
Path: [1, 3, 7, 15, 30, 61, 123, 247, 494, 988, 1976, 3952, 7904, 15809, 31618, 63237, 126474, 252948, 505896, 1011793, 2023587, 4047175, 8094351, 16188703, 32377406, 64754812, 129509625, 259019250, 518038500, 1036077001, 2072154003, 4144308007, 8288616015, 16577232030, 33154464061, 66308928123, 132617856246, 265235712492, 530471424984, 1060942849968, 2121885699937, 4243771399874, 8487542799748, 16975085599497, 33950171198994, 67900342397988, 135800684795976, 271601369591953, 543202739183906, 1086405478367812, 2172810956735624, 4345621913471249, 8691243826942498, 17382487653884996, 34764975307769993, 69529950615539986, 139059901231079973, 278119802462159947, 556239604924319894, 1112479209848639789, 2224958419697279578, 4449916839394559157, 8899833678789118314, 17799667357578236628]
Depth: 63

Private Key: 30568377312064202855
Path: [1, 3, 6, 13, 26, 53, 106, 212, 424, 848, 1696, 3393, 6787, 13575, 27150, 54300, 108600, 217201, 434402, 868805, 1737611, 3475222, 6950444, 13900888, 27801777, 55603554, 111207108, 222414217, 444828435, 889656870, 1779313741, 3558627482, 7117254965, 14234509930, 28469019860, 56938039720, 113876079440, 227752158880, 455504317761, 911008635522, 1822017271045, 3644034542091, 7288069084182, 14576138168365, 29152276336731, 58304552673462, 116609105346924, 233218210693849, 466436421387698, 932872842775396, 1865745685550793, 3731491371101587, 7462982742203174, 14925965484406349, 29851930968812698, 59703861937625396, 119407723875250792, 238815447750501584, 477630895501003169, 955261791002006339, 1910523582004012678, 3821047164008025356, 7642094328016050713, 15284188656032101427, 30568377312064202855]
Depth: 64

Private Key: 46346217550346335726
Path: [1, 2, 5, 10, 20, 40, 80, 160, 321, 643, 1286, 2572, 5145, 10290, 20581, 41163, 82327, 164654, 329309, 658619, 1317238, 2634477, 5268954, 10537909, 21075819, 42151639, 84303278, 168606557, 337213114, 674426228, 1348852457, 2697704915, 5395409831, 10790819663, 21581639326, 43163278652, 86326557305, 172653114610, 345306229221, 690612458442, 1381224916885, 2762449833771, 5524899667542, 11049799335085, 22099598670170, 44199197340341, 88398394680683, 176796789361367, 353593578722735, 707187157445470, 1414374314890940, 2828748629781880, 5657497259563761, 11314994519127523, 22629989038255046, 45259978076510093, 90519956153020186, 181039912306040373, 362079824612080747, 724159649224161495, 1448319298448322991, 2896638596896645982, 5793277193793291965, 11586554387586583931, 23173108775173167863, 46346217550346335726]
Depth: 65

Private Key: 132656943602386256302
Path: [1, 3, 7, 14, 28, 57, 115, 230, 460, 920, 1840, 3681, 7363, 14727, 29455, 58911, 117823, 235646, 471292, 942584, 1885168, 3770337, 7540674, 15081348, 30162696, 60325393, 120650787, 241301574, 482603149, 965206298, 1930412597, 3860825195, 7721650391, 15443300782, 30886601564, 61773203128, 123546406256, 247092812512, 494185625025, 988371250051, 1976742500102, 3953485000204, 7906970000409, 15813940000818, 31627880001637, 63255760003274, 126511520006548, 253023040013096, 506046080026192, 1012092160052385, 2024184320104770, 4048368640209541, 8096737280419083, 16193474560838166, 32386949121676332, 64773898243352664, 129547796486705328, 259095592973410656, 518191185946821313, 1036382371893642627, 2072764743787285254, 4145529487574570509, 8291058975149141018, 16582117950298282037, 33164235900596564075, 66328471801193128151, 132656943602386256302]
Depth: 66

Private Key: 219898266213316039825
Path: [1, 2, 5, 11, 23, 47, 95, 190, 381, 762, 1525, 3051, 6103, 12206, 24413, 48827, 97654, 195308, 390617, 781235, 1562471, 3124942, 6249884, 12499769, 24999538, 49999077, 99998154, 199996308, 399992616, 799985232, 1599970464, 3199940928, 6399881857, 12799763715, 25599527430, 51199054860, 102398109721, 204796219443, 409592438886, 819184877773, 1638369755546, 3276739511092, 6553479022184, 13106958044368, 26213916088737, 52427832177475, 104855664354951, 209711328709903, 419422657419807, 838845314839615, 1677690629679230, 3355381259358460, 6710762518716920, 13421525037433840, 26843050074867680, 53686100149735361, 107372200299470722, 214744400598941445, 429488801197882890, 858977602395765780, 1717955204791531561, 3435910409583063122, 6871820819166126244, 13743641638332252489, 27487283276664504978, 54974566553329009956, 109949133106658019912, 219898266213316039825]
Depth: 67

Private Key: 297274491920375905804
Path: [1, 2, 4, 8, 16, 32, 64, 128, 257, 515, 1031, 2062, 4125, 8251, 16502, 33004, 66008, 132016, 264032, 528065, 1056131, 2112262, 4224524, 8449049, 16898098, 33796196, 67592393, 135184787, 270369575, 540739150, 1081478301, 2162956602, 4325913205, 8651826411, 17303652823, 34607305647, 69214611295, 138429222591, 276858445182, 553716890365, 1107433780731, 2214867561462, 4429735122924, 8859470245849, 17718940491698, 35437880983397, 70875761966794, 141751523933589, 283503047867179, 567006095734359, 1134012191468719, 2268024382937438, 4536048765874876, 9072097531749752, 18144195063499505, 36288390126999011, 72576780253998023, 145153560507996047, 290307121015992095, 580614242031984191, 1161228484063968382, 2322456968127936764, 4644913936255873528, 9289827872511747056, 18579655745023494112, 37159311490046988225, 74318622980093976451, 148637245960187952902, 297274491920375905804]
Depth: 68

Private Key: 970436974005023690481
Path: [1, 3, 6, 13, 26, 52, 105, 210, 420, 841, 1683, 3366, 6733, 13467, 26935, 53870, 107740, 215480, 430960, 861921, 1723842, 3447684, 6895369, 13790738, 27581477, 55162955, 110325910, 220651821, 441303643, 882607286, 1765214572, 3530429145, 7060858290, 14121716580, 28243433160, 56486866320, 112973732641, 225947465283, 451894930566, 903789861132, 1807579722264, 3615159444529, 7230318889059, 14460637778118, 28921275556237, 57842551112474, 115685102224948, 231370204449897, 462740408899795, 925480817799590, 1850961635599181, 3701923271198363, 7403846542396726, 14807693084793452, 29615386169586904, 59230772339173809, 118461544678347618, 236923089356695236, 473846178713390473, 947692357426780947, 1895384714853561895, 3790769429707123790, 7581538859414247581, 15163077718828495163, 30326155437656990327, 60652310875313980655, 121304621750627961310, 242609243501255922620, 485218487002511845240, 970436974005023690481]
Depth: 69

=== Analysis Statistics ===
Most common edges:
  Edge (1, 3) appears 36 times
  Edge (1, 2) appears 33 times
  Edge (2, 5) appears 19 times
  Edge (3, 6) appears 19 times
  Edge (3, 7) appears 16 times
  Edge (6, 13) appears 15 times
  Edge (2, 4) appears 14 times
  Edge (5, 10) appears 10 times
  Edge (13, 26) appears 10 times
  Edge (5, 11) appears 9 times

Most common nodes:
  Node 1 appears 70 times
  Node 3 appears 36 times
  Node 2 appears 33 times
  Node 5 appears 19 times
  Node 6 appears 19 times
  Node 7 appears 16 times
  Node 13 appears 15 times
  Node 4 appears 14 times
  Node 10 appears 10 times
  Node 26 appears 10 times

Most common prefixes (partial paths):
  Prefix (1,) appears 70 times
  Prefix (1, 3) appears 36 times
  Prefix (1, 2) appears 33 times
  Prefix (1, 2, 5) appears 19 times
  Prefix (1, 3, 6) appears 19 times
  Prefix (1, 3, 7) appears 16 times
  Prefix (1, 3, 6, 13) appears 15 times
  Prefix (1, 2, 4) appears 14 times
  Prefix (1, 2, 5, 10) appears 10 times
  Prefix (1, 3, 6, 13, 26) appears 10 times


Note:
These findings might not be significant for others, but for me it is hard work and research of finding Bitcoins since 5 years.

can you replicate this output using code.

Paths of first 70 private keys:
All paths from root for each Private Key:
Private Key: 1
Path: [1]
Depth: 0

Private Key: 3
Path: [1, 3]
Depth: 1

Private Key: 7
Path: [1, 3, 7]
Depth: 2

Private Key: 8
Path: [1, 2, 4, 8]
Depth: 3

Private Key: 21
Path: [1, 2, 5, 10, 21]
Depth: 4

Private Key: 49
Path: [1, 3, 6, 12, 24, 49]
Depth: 5

Private Key: 76
Path: [1, 2, 4, 9, 19, 38, 76]
Depth: 6

Private Key: 224
Path: [1, 3, 7, 14, 28, 56, 112, 224]
Depth: 7

Private Key: 467
Path: [1, 3, 7, 14, 29, 58, 116, 233, 467]
Depth: 8

Private Key: 514
Path: [1, 2, 4, 8, 16, 32, 64, 128, 257, 514]
Depth: 9
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 02/08/2025, 14:14:04 UTC
Paths of first 70 private keys:
All paths from root for each Private Key:
Private Key: 1
Path: [1]
Depth: 0

Private Key: 3
Path: [1, 3]
Depth: 1

Private Key: 7
Path: [1, 3, 7]
Depth: 2

Private Key: 8
Path: [1, 2, 4, 8]
Depth: 3

Private Key: 21
Path: [1, 2, 5, 10, 21]
Depth: 4

Private Key: 49
Path: [1, 3, 6, 12, 24, 49]
Depth: 5

Private Key: 76
Path: [1, 2, 4, 9, 19, 38, 76]
Depth: 6

Private Key: 224
Path: [1, 3, 7, 14, 28, 56, 112, 224]
Depth: 7

Private Key: 467
Path: [1, 3, 7, 14, 29, 58, 116, 233, 467]
Depth: 8

Private Key: 514
Path: [1, 2, 4, 8, 16, 32, 64, 128, 257, 514]
Depth: 9

Private Key: 1155
Path: [1, 2, 4, 9, 18, 36, 72, 144, 288, 577, 1155]
Depth: 10

Private Key: 2683
Path: [1, 2, 5, 10, 20, 41, 83, 167, 335, 670, 1341, 2683]
Depth: 11

Private Key: 5216
Path: [1, 2, 5, 10, 20, 40, 81, 163, 326, 652, 1304, 2608, 5216]
Depth: 12

Private Key: 10544
Path: [1, 2, 5, 10, 20, 41, 82, 164, 329, 659, 1318, 2636, 5272, 10544]
Depth: 13

Private Key: 26867
Path: [1, 3, 6, 13, 26, 52, 104, 209, 419, 839, 1679, 3358, 6716, 13433, 26867]
Depth: 14

Private Key: 51510
Path: [1, 3, 6, 12, 25, 50, 100, 201, 402, 804, 1609, 3219, 6438, 12877, 25755, 51510]
Depth: 15

Private Key: 95823
Path: [1, 2, 5, 11, 23, 46, 93, 187, 374, 748, 1497, 2994, 5988, 11977, 23955, 47911, 95823]
Depth: 16

Private Key: 198669
Path: [1, 3, 6, 12, 24, 48, 97, 194, 388, 776, 1552, 3104, 6208, 12416, 24833, 49667, 99334, 198669]
Depth: 17

Private Key: 357535
Path: [1, 2, 5, 10, 21, 43, 87, 174, 349, 698, 1396, 2793, 5586, 11172, 22345, 44691, 89383, 178767, 357535]
Depth: 18

Private Key: 863317
Path: [1, 3, 6, 13, 26, 52, 105, 210, 421, 843, 1686, 3372, 6744, 13489, 26978, 53957, 107914, 215829, 431658, 863317]
Depth: 19

Private Key: 1811764
Path: [1, 3, 6, 13, 27, 55, 110, 221, 442, 884, 1769, 3538, 7077, 14154, 28308, 56617, 113235, 226470, 452941, 905882, 1811764]
Depth: 20

Private Key: 3007503
Path: [1, 2, 5, 11, 22, 45, 91, 183, 367, 734, 1468, 2937, 5874, 11748, 23496, 46992, 93984, 187968, 375937, 751875, 1503751, 3007503]
Depth: 21

Private Key: 5598802
Path: [1, 2, 5, 10, 21, 42, 85, 170, 341, 683, 1366, 2733, 5467, 10935, 21870, 43740, 87481, 174962, 349925, 699850, 1399700, 2799401, 5598802]
Depth: 22

Private Key: 14428676
Path: [1, 3, 6, 13, 27, 55, 110, 220, 440, 880, 1761, 3522, 7045, 14090, 28181, 56362, 112724, 225448, 450896, 901792, 1803584, 3607169, 7214338, 14428676]
Depth: 23

Private Key: 33185509
Path: [1, 3, 7, 15, 31, 63, 126, 253, 506, 1012, 2025, 4050, 8101, 16203, 32407, 64815, 129630, 259261, 518523, 1037047, 2074094, 4148188, 8296377, 16592754, 33185509]
Depth: 24

Private Key: 54538862
Path: [1, 3, 6, 13, 26, 52, 104, 208, 416, 832, 1664, 3328, 6657, 13315, 26630, 53260, 106521, 213042, 426084, 852169, 1704339, 3408678, 6817357, 13634715, 27269431, 54538862]
Depth: 25

Private Key: 111949941
Path: [1, 3, 6, 13, 26, 53, 106, 213, 427, 854, 1708, 3416, 6832, 13665, 27331, 54663, 109326, 218652, 437304, 874608, 1749217, 3498435, 6996871, 13993742, 27987485, 55974970, 111949941]
Depth: 26

Private Key: 227634408
Path: [1, 3, 6, 13, 27, 54, 108, 217, 434, 868, 1736, 3473, 6946, 13893, 27787, 55574, 111149, 222299, 444598, 889196, 1778393, 3556787, 7113575, 14227150, 28454301, 56908602, 113817204, 227634408]
Depth: 27

Private Key: 400708894
Path: [1, 2, 5, 11, 23, 47, 95, 191, 382, 764, 1528, 3057, 6114, 12228, 24457, 48914, 97829, 195658, 391317, 782634, 1565269, 3130538, 6261076, 12522152, 25044305, 50088611, 100177223, 200354447, 400708894]
Depth: 28

Private Key: 1033162084
Path: [1, 3, 7, 15, 30, 61, 123, 246, 492, 985, 1970, 3941, 7882, 15764, 31529, 63059, 126118, 252236, 504473, 1008947, 2017894, 4035789, 8071578, 16143157, 32286315, 64572630, 129145260, 258290521, 516581042, 1033162084]
Depth: 29

Private Key: 2102388551
Path: [1, 3, 7, 15, 31, 62, 125, 250, 501, 1002, 2004, 4009, 8019, 16039, 32079, 64159, 128319, 256639, 513278, 1026556, 2053113, 4106227, 8212455, 16424910, 32849821, 65699642, 131399284, 262798568, 525597137, 1051194275, 2102388551]
Depth: 30

Private Key: 3093472814
Path: [1, 2, 5, 11, 23, 46, 92, 184, 368, 737, 1475, 2950, 5900, 11800, 23601, 47202, 94405, 188810, 377621, 755242, 1510484, 3020969, 6041939, 12083878, 24167756, 48335512, 96671025, 193342050, 386684101, 773368203, 1546736407, 3093472814]
Depth: 31

Private Key: 7137437912
Path: [1, 3, 6, 13, 26, 53, 106, 212, 425, 850, 1701, 3403, 6806, 13613, 27227, 54454, 108908, 217817, 435634, 871269, 1742538, 3485077, 6970154, 13940308, 27880616, 55761233, 111522467, 223044934, 446089869, 892179739, 1784359478, 3568718956, 7137437912]
Depth: 32

Private Key: 14133072157
Path: [1, 3, 6, 13, 26, 52, 105, 210, 421, 842, 1684, 3369, 6739, 13478, 26956, 53913, 107826, 215653, 431307, 862614, 1725228, 3450457, 6900914, 13801828, 27603656, 55207313, 110414626, 220829252, 441658504, 883317009, 1766634019, 3533268039, 7066536078, 14133072157]
Depth: 33

Private Key: 20112871792
Path: [1, 2, 4, 9, 18, 37, 74, 149, 299, 599, 1198, 2397, 4795, 9590, 19181, 38362, 76724, 153449, 306898, 613796, 1227592, 2455184, 4910369, 9820738, 19641476, 39282952, 78565905, 157131810, 314263621, 628527243, 1257054487, 2514108974, 5028217948, 10056435896, 20112871792]
Depth: 34

Private Key: 42387769980
Path: [1, 2, 4, 9, 19, 39, 78, 157, 315, 631, 1263, 2526, 5053, 10106, 20212, 40424, 80848, 161696, 323393, 646786, 1293572, 2587144, 5174288, 10348576, 20697153, 41394306, 82788613, 165577226, 331154452, 662308905, 1324617811, 2649235623, 5298471247, 10596942495, 21193884990, 42387769980]
Depth: 35

Private Key: 100251560595
Path: [1, 2, 5, 11, 23, 46, 93, 186, 373, 746, 1493, 2987, 5975, 11950, 23901, 47803, 95607, 191214, 382429, 764858, 1529717, 3059434, 6118869, 12237739, 24475478, 48950957, 97901914, 195803829, 391607658, 783215317, 1566430634, 3132861268, 6265722537, 12531445074, 25062890148, 50125780297, 100251560595]
Depth: 36

Private Key: 146971536592
Path: [1, 2, 4, 8, 17, 34, 68, 136, 273, 547, 1095, 2190, 4380, 8760, 17520, 35040, 70081, 140162, 280325, 560651, 1121303, 2242607, 4485215, 8970430, 17940861, 35881722, 71763445, 143526891, 287053782, 574107564, 1148215129, 2296430259, 4592860518, 9185721037, 18371442074, 36742884148, 73485768296, 146971536592]
Depth: 37

Private Key: 323724968937
Path: [1, 2, 4, 9, 18, 37, 75, 150, 301, 602, 1205, 2411, 4823, 9647, 19295, 38591, 77182, 154364, 308728, 617456, 1234912, 2469825, 4939651, 9879302, 19758604, 39517208, 79034416, 158068832, 316137664, 632275329, 1264550659, 2529101319, 5058202639, 10116405279, 20232810558, 40465621117, 80931242234, 161862484468, 323724968937]
Depth: 38

Private Key: 1003651412950
Path: [1, 3, 7, 14, 29, 58, 116, 233, 467, 934, 1869, 3738, 7477, 14955, 29911, 59822, 119644, 239289, 478578, 957156, 1914313, 3828626, 7657252, 15314505, 30629010, 61258020, 122516041, 245032083, 490064166, 980128332, 1960256665, 3920513331, 7841026663, 15682053327, 31364106654, 62728213309, 125456426618, 250912853237, 501825706475, 1003651412950]
Depth: 39

Private Key: 1458252205147
Path: [1, 2, 5, 10, 21, 42, 84, 169, 339, 679, 1358, 2716, 5432, 10864, 21729, 43459, 86918, 173837, 347674, 695348, 1390697, 2781395, 5562790, 11125581, 22251162, 44502325, 89004651, 178009302, 356018604, 712037209, 1424074419, 2848148838, 5696297676, 11392595352, 22785190705, 45570381410, 91140762821, 182281525643, 364563051286, 729126102573, 1458252205147]
Depth: 40

Private Key: 2895374552463
Path: [1, 2, 5, 10, 21, 42, 84, 168, 337, 674, 1348, 2696, 5393, 10786, 21572, 43144, 86288, 172577, 345155, 690311, 1380622, 2761244, 5522488, 11044977, 22089954, 44179909, 88359819, 176719638, 353439276, 706878552, 1413757105, 2827514211, 5655028422, 11310056845, 22620113691, 45240227382, 90480454764, 180960909528, 361921819057, 723843638115, 1447687276231, 2895374552463]
Depth: 41

Private Key: 7409811047825
Path: [1, 3, 6, 13, 26, 53, 107, 215, 431, 862, 1725, 3450, 6900, 13801, 27603, 55207, 110414, 220829, 441659, 883318, 1766636, 3533273, 7066546, 14133092, 28266185, 56532371, 113064743, 226129487, 452258975, 904517950, 1809035900, 3618071800, 7236143601, 14472287202, 28944574405, 57889148811, 115778297622, 231556595244, 463113190489, 926226380978, 1852452761956, 3704905523912, 7409811047825]
Depth: 42

Private Key: 15404761757071
Path: [1, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1793, 3586, 7173, 14346, 28693, 57387, 114774, 229548, 459097, 918195, 1836390, 3672781, 7345562, 14691125, 29382251, 58764502, 117529005, 235058010, 470116020, 940232040, 1880464081, 3760928163, 7521856326, 15043712653, 30087425306, 60174850613, 120349701227, 240699402454, 481398804908, 962797609816, 1925595219633, 3851190439267, 7702380878535, 15404761757071]
Depth: 43

Private Key: 19996463086597
Path: [1, 2, 4, 9, 18, 36, 72, 145, 290, 581, 1163, 2327, 4655, 9311, 18623, 37246, 74492, 148985, 297970, 595941, 1191882, 2383764, 4767528, 9535056, 19070113, 38140226, 76280453, 152560906, 305121812, 610243624, 1220487248, 2440974497, 4881948995, 9763897991, 19527795983, 39055591966, 78111183932, 156222367864, 312444735728, 624889471456, 1249778942912, 2499557885824, 4999115771649, 9998231543298, 19996463086597]
Depth: 44

Private Key: 51408670348612
Path: [1, 2, 5, 11, 23, 46, 93, 187, 374, 748, 1496, 2992, 5984, 11969, 23939, 47878, 95756, 191512, 383024, 766048, 1532097, 3064195, 6128391, 12256782, 24513564, 49027128, 98054257, 196108514, 392217028, 784434056, 1568868113, 3137736227, 6275472454, 12550944909, 25101889818, 50203779637, 100407559274, 200815118549, 401630237098, 803260474197, 1606520948394, 3213041896788, 6426083793576, 12852167587153, 25704335174306, 51408670348612]
Depth: 45

Private Key: 119666659114170
Path: [1, 3, 6, 13, 27, 54, 108, 217, 435, 870, 1741, 3482, 6965, 13931, 27862, 55724, 111448, 222896, 445793, 891586, 1783172, 3566344, 7132688, 14265377, 28530754, 57061509, 114123019, 228246038, 456492077, 912984154, 1825968309, 3651936618, 7303873236, 14607746473, 29215492947, 58430985895, 116861971791, 233723943582, 467447887164, 934895774329, 1869791548658, 3739583097317, 7479166194635, 14958332389271, 29916664778542, 59833329557085, 119666659114170]
Depth: 46

Private Key: 191206974700443
Path: [1, 2, 5, 10, 21, 43, 86, 173, 347, 695, 1391, 2782, 5564, 11129, 22259, 44518, 89037, 178075, 356150, 712301, 1424602, 2849205, 5698411, 11396823, 22793647, 45587295, 91174590, 182349180, 364698361, 729396723, 1458793447, 2917586894, 5835173788, 11670347576, 23340695153, 46681390307, 93362780615, 186725561230, 373451122461, 746902244923, 1493804489847, 2987608979694, 5975217959388, 11950435918777, 23900871837555, 47801743675110, 95603487350221, 191206974700443]
Depth: 47

Private Key: 409118905032525
Path: [1, 2, 5, 11, 23, 46, 93, 186, 372, 744, 1488, 2976, 5953, 11906, 23813, 47627, 95255, 190510, 381021, 762043, 1524086, 3048173, 6096346, 12192693, 24385387, 48770774, 97541548, 195083096, 390166192, 780332384, 1560664768, 3121329536, 6242659073, 12485318146, 24970636293, 49941272586, 99882545173, 199765090347, 399530180695, 799060361391, 1598120722783, 3196241445566, 6392482891133, 12784965782266, 25569931564532, 51139863129065, 102279726258131, 204559452516262, 409118905032525]
Depth: 48

Private Key: 611140496167764
Path: [1, 2, 4, 8, 17, 34, 69, 138, 277, 555, 1111, 2223, 4446, 8893, 17786, 35573, 71146, 142292, 284584, 569168, 1138337, 2276675, 4553351, 9106703, 18213406, 36426812, 72853624, 145707248, 291414497, 582828994, 1165657989, 2331315979, 4662631959, 9325263918, 18650527837, 37301055674, 74602111348, 149204222697, 298408445394, 596816890788, 1193633781577, 2387267563155, 4774535126310, 9549070252621, 19098140505242, 38196281010485, 76392562020970, 152785124041941, 305570248083882, 611140496167764]
Depth: 49

Private Key: 2058769515153876
Path: [1, 3, 7, 14, 29, 58, 117, 234, 468, 936, 1872, 3744, 7489, 14979, 29959, 59918, 119836, 239672, 479344, 958689, 1917378, 3834757, 7669514, 15339028, 30678056, 61356112, 122712225, 245424451, 490848902, 981697805, 1963395610, 3926791220, 7853582440, 15707164880, 31414329760, 62828659520, 125657319040, 251314638080, 502629276160, 1005258552321, 2010517104642, 4021034209284, 8042068418569, 16084136837139, 32168273674279, 64336547348558, 128673094697117, 257346189394234, 514692378788469, 1029384757576938, 2058769515153876]
Depth: 50

Private Key: 4216495639600700
Path: [1, 3, 7, 14, 29, 59, 119, 239, 479, 958, 1917, 3834, 7669, 15339, 30679, 61358, 122716, 245432, 490864, 981729, 1963458, 3926917, 7853835, 15707670, 31415340, 62830681, 125661362, 251322724, 502645449, 1005290899, 2010581798, 4021163596, 8042327193, 16084654386, 32169308773, 64338617547, 128677235095, 257354470190, 514708940380, 1029417880761, 2058835761523, 4117671523047, 8235343046095, 16470686092190, 32941372184380, 65882744368760, 131765488737521, 263530977475043, 527061954950087, 1054123909900175, 2108247819800350, 4216495639600700]
Depth: 51

Private Key: 6763683971478124
Path: [1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1537, 3075, 6151, 12303, 24606, 49212, 98424, 196849, 393698, 787396, 1574792, 3149585, 6299171, 12598343, 25196686, 50393372, 100786745, 201573490, 403146980, 806293960, 1612587921, 3225175843, 6450351687, 12900703375, 25801406751, 51602813503, 103205627006, 206411254012, 412822508024, 825645016049, 1651290032099, 3302580064198, 6605160128396, 13210320256793, 26420640513586, 52841281027172, 105682562054345, 211365124108691, 422730248217382, 845460496434765, 1690920992869531, 3381841985739062, 6763683971478124]
Depth: 52

Private Key: 9974455244496707
Path: [1, 2, 4, 8, 17, 35, 70, 141, 283, 566, 1133, 2267, 4535, 9071, 18143, 36286, 72573, 145147, 290294, 580589, 1161179, 2322358, 4644717, 9289435, 18578870, 37157741, 74315482, 148630965, 297261930, 594523861, 1189047723, 2378095446, 4756190893, 9512381786, 19024763573, 38049527147, 76099054294, 152198108589, 304396217178, 608792434356, 1217584868712, 2435169737425, 4870339474851, 9740678949703, 19481357899407, 38962715798815, 77925431597630, 155850863195261, 311701726390522, 623403452781044, 1246806905562088, 2493613811124176, 4987227622248353, 9974455244496707]
Depth: 53

Private Key: 30045390491869460
Path: [1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1707, 3415, 6831, 13663, 27326, 54652, 109304, 218608, 437217, 874435, 1748871, 3497743, 6995487, 13990975, 27981950, 55963900, 111927801, 223855603, 447711206, 895422413, 1790844827, 3581689654, 7163379309, 14326758619, 28653517238, 57307034476, 114614068953, 229228137907, 458456275815, 916912551631, 1833825103263, 3667650206527, 7335300413054, 14670600826108, 29341201652216, 58682403304432, 117364806608865, 234729613217730, 469459226435460, 938918452870920, 1877836905741841, 3755673811483682, 7511347622967365, 15022695245934730, 30045390491869460]
Depth: 54

Private Key: 44218742292676575
Path: [1, 2, 4, 9, 19, 39, 78, 157, 314, 628, 1256, 2513, 5027, 10054, 20108, 40216, 80433, 160866, 321733, 643467, 1286934, 2573869, 5147739, 10295478, 20590956, 41181912, 82363825, 164727651, 329455303, 658910606, 1317821213, 2635642426, 5271284853, 10542569707, 21085139414, 42170278828, 84340557656, 168681115313, 337362230626, 674724461252, 1349448922505, 2698897845011, 5397795690023, 10795591380047, 21591182760095, 43182365520191, 86364731040383, 172729462080767, 345458924161535, 690917848323071, 1381835696646142, 2763671393292285, 5527342786584571, 11054685573169143, 22109371146338287, 44218742292676575]
Depth: 55

Private Key: 138245758910846492
Path: [1, 3, 7, 15, 30, 61, 122, 245, 491, 982, 1964, 3929, 7858, 15716, 31433, 62866, 125733, 251467, 502935, 1005870, 2011740, 4023481, 8046962, 16093924, 32187849, 64375698, 128751396, 257502792, 515005584, 1030011168, 2060022337, 4120044675, 8240089351, 16480178703, 32960357406, 65920714812, 131841429625, 263682859250, 527365718501, 1054731437002, 2109462874005, 4218925748011, 8437851496023, 16875702992046, 33751405984093, 67502811968186, 135005623936373, 270011247872747, 540022495745494, 1080044991490988, 2160089982981976, 4320179965963952, 8640359931927905, 17280719863855811, 34561439727711623, 69122879455423246, 138245758910846492]
Depth: 56

Private Key: 199976667976342049
Path: [1, 2, 5, 11, 22, 44, 88, 177, 355, 710, 1420, 2841, 5683, 11367, 22734, 45469, 90938, 181877, 363755, 727510, 1455021, 2910043, 5820087, 11640174, 23280348, 46560696, 93121392, 186242785, 372485570, 744971141, 1489942282, 2979884564, 5959769129, 11919538258, 23839076516, 47678153032, 95356306064, 190712612129, 381425224259, 762850448518, 1525700897036, 3051401794072, 6102803588145, 12205607176290, 24411214352580, 48822428705161, 97644857410323, 195289714820646, 390579429641293, 781158859282586, 1562317718565172, 3124635437130344, 6249270874260689, 12498541748521378, 24997083497042756, 49994166994085512, 99988333988171024, 199976667976342049]
Depth: 57

Private Key: 525070384258266191
Path: [1, 3, 7, 14, 29, 58, 116, 233, 466, 932, 1865, 3730, 7461, 14923, 29846, 59693, 119387, 238774, 477548, 955097, 1910194, 3820389, 7640779, 15281559, 30563118, 61126237, 122252475, 244504951, 489009902, 978019804, 1956039608, 3912079216, 7824158433, 15648316867, 31296633735, 62593267471, 125186534943, 250373069886, 500746139772, 1001492279545, 2002984559090, 4005969118181, 8011938236362, 16023876472725, 32047752945450, 64095505890901, 128191011781803, 256382023563606, 512764047127213, 1025528094254426, 2051056188508852, 4102112377017704, 8204224754035409, 16408449508070818, 32816899016141636, 65633798032283273, 131267596064566547, 262535192129133095, 525070384258266191]
Depth: 58

Private Key: 1135041350219496382
Path: [1, 3, 7, 15, 31, 63, 126, 252, 504, 1008, 2016, 4032, 8064, 16129, 32259, 64519, 129039, 258078, 516157, 1032314, 2064628, 4129256, 8258512, 16517025, 33034051, 66068102, 132136204, 264272408, 528544816, 1057089632, 2114179265, 4228358530, 8456717060, 16913434121, 33826868242, 67653736485, 135307472970, 270614945940, 541229891881, 1082459783763, 2164919567526, 4329839135053, 8659678270107, 17319356540214, 34638713080428, 69277426160857, 138554852321715, 277109704643431, 554219409286863, 1108438818573726, 2216877637147453, 4433755274294907, 8867510548589815, 17735021097179630, 35470042194359261, 70940084388718523, 141880168777437047, 283760337554874095, 567520675109748191, 1135041350219496382]
Depth: 59

Private Key: 1425787542618654982
Path: [1, 2, 4, 9, 19, 39, 79, 158, 316, 633, 1266, 2532, 5065, 10130, 20261, 40523, 81046, 162093, 324186, 648373, 1296746, 2593492, 5186984, 10373969, 20747939, 41495878, 82991757, 165983515, 331967031, 663934062, 1327868125, 2655736250, 5311472500, 10622945000, 21245890000, 42491780001, 84983560002, 169967120005, 339934240011, 679868480023, 1359736960047, 2719473920094, 5438947840189, 10877895680379, 21755791360758, 43511582721516, 87023165443033, 174046330886066, 348092661772132, 696185323544265, 1392370647088530, 2784741294177060, 5569482588354121, 11138965176708242, 22277930353416484, 44555860706832968, 89111721413665936, 178223442827331872, 356446885654663745, 712893771309327491, 1425787542618654982]
Depth: 60

Private Key: 3908372542507822062
Path: [1, 3, 6, 13, 27, 54, 108, 216, 433, 867, 1735, 3471, 6942, 13885, 27770, 55541, 111082, 222165, 444330, 888661, 1777322, 3554644, 7109288, 14218576, 28437152, 56874305, 113748611, 227497223, 454994447, 909988894, 1819977789, 3639955578, 7279911157, 14559822315, 29119644630, 58239289261, 116478578523, 232957157046, 465914314092, 931828628184, 1863657256368, 3727314512737, 7454629025474, 14909258050948, 29818516101896, 59637032203793, 119274064407587, 238548128815174, 477096257630349, 954192515260698, 1908385030521397, 3816770061042794, 7633540122085589, 15267080244171179, 30534160488342359, 61068320976684719, 122136641953369439, 244273283906738878, 488546567813477757, 977093135626955515, 1954186271253911031, 3908372542507822062]
Depth: 61

Private Key: 8993229949524469768
Path: [1, 3, 7, 15, 31, 62, 124, 249, 499, 998, 1996, 3993, 7987, 15975, 31950, 63900, 127801, 255602, 511205, 1022411, 2044823, 4089647, 8179294, 16358589, 32717179, 65434359, 130868719, 261737439, 523474879, 1046949758, 2093899517, 4187799035, 8375598070, 16751196141, 33502392282, 67004784565, 134009569131, 268019138262, 536038276524, 1072076553049, 2144153106099, 4288306212198, 8576612424396, 17153224848793, 34306449697587, 68612899395175, 137225798790351, 274451597580702, 548903195161405, 1097806390322811, 2195612780645622, 4391225561291245, 8782451122582490, 17564902245164980, 35129804490329960, 70259608980659920, 140519217961319840, 281038435922639680, 562076871845279360, 1124153743690558721, 2248307487381117442, 4496614974762234884, 8993229949524469768]
Depth: 62

Private Key: 17799667357578236628
Path: [1, 3, 7, 15, 30, 61, 123, 247, 494, 988, 1976, 3952, 7904, 15809, 31618, 63237, 126474, 252948, 505896, 1011793, 2023587, 4047175, 8094351, 16188703, 32377406, 64754812, 129509625, 259019250, 518038500, 1036077001, 2072154003, 4144308007, 8288616015, 16577232030, 33154464061, 66308928123, 132617856246, 265235712492, 530471424984, 1060942849968, 2121885699937, 4243771399874, 8487542799748, 16975085599497, 33950171198994, 67900342397988, 135800684795976, 271601369591953, 543202739183906, 1086405478367812, 2172810956735624, 4345621913471249, 8691243826942498, 17382487653884996, 34764975307769993, 69529950615539986, 139059901231079973, 278119802462159947, 556239604924319894, 1112479209848639789, 2224958419697279578, 4449916839394559157, 8899833678789118314, 17799667357578236628]
Depth: 63

Private Key: 30568377312064202855
Path: [1, 3, 6, 13, 26, 53, 106, 212, 424, 848, 1696, 3393, 6787, 13575, 27150, 54300, 108600, 217201, 434402, 868805, 1737611, 3475222, 6950444, 13900888, 27801777, 55603554, 111207108, 222414217, 444828435, 889656870, 1779313741, 3558627482, 7117254965, 14234509930, 28469019860, 56938039720, 113876079440, 227752158880, 455504317761, 911008635522, 1822017271045, 3644034542091, 7288069084182, 14576138168365, 29152276336731, 58304552673462, 116609105346924, 233218210693849, 466436421387698, 932872842775396, 1865745685550793, 3731491371101587, 7462982742203174, 14925965484406349, 29851930968812698, 59703861937625396, 119407723875250792, 238815447750501584, 477630895501003169, 955261791002006339, 1910523582004012678, 3821047164008025356, 7642094328016050713, 15284188656032101427, 30568377312064202855]
Depth: 64

Private Key: 46346217550346335726
Path: [1, 2, 5, 10, 20, 40, 80, 160, 321, 643, 1286, 2572, 5145, 10290, 20581, 41163, 82327, 164654, 329309, 658619, 1317238, 2634477, 5268954, 10537909, 21075819, 42151639, 84303278, 168606557, 337213114, 674426228, 1348852457, 2697704915, 5395409831, 10790819663, 21581639326, 43163278652, 86326557305, 172653114610, 345306229221, 690612458442, 1381224916885, 2762449833771, 5524899667542, 11049799335085, 22099598670170, 44199197340341, 88398394680683, 176796789361367, 353593578722735, 707187157445470, 1414374314890940, 2828748629781880, 5657497259563761, 11314994519127523, 22629989038255046, 45259978076510093, 90519956153020186, 181039912306040373, 362079824612080747, 724159649224161495, 1448319298448322991, 2896638596896645982, 5793277193793291965, 11586554387586583931, 23173108775173167863, 46346217550346335726]
Depth: 65

Private Key: 132656943602386256302
Path: [1, 3, 7, 14, 28, 57, 115, 230, 460, 920, 1840, 3681, 7363, 14727, 29455, 58911, 117823, 235646, 471292, 942584, 1885168, 3770337, 7540674, 15081348, 30162696, 60325393, 120650787, 241301574, 482603149, 965206298, 1930412597, 3860825195, 7721650391, 15443300782, 30886601564, 61773203128, 123546406256, 247092812512, 494185625025, 988371250051, 1976742500102, 3953485000204, 7906970000409, 15813940000818, 31627880001637, 63255760003274, 126511520006548, 253023040013096, 506046080026192, 1012092160052385, 2024184320104770, 4048368640209541, 8096737280419083, 16193474560838166, 32386949121676332, 64773898243352664, 129547796486705328, 259095592973410656, 518191185946821313, 1036382371893642627, 2072764743787285254, 4145529487574570509, 8291058975149141018, 16582117950298282037, 33164235900596564075, 66328471801193128151, 132656943602386256302]
Depth: 66

Private Key: 219898266213316039825
Path: [1, 2, 5, 11, 23, 47, 95, 190, 381, 762, 1525, 3051, 6103, 12206, 24413, 48827, 97654, 195308, 390617, 781235, 1562471, 3124942, 6249884, 12499769, 24999538, 49999077, 99998154, 199996308, 399992616, 799985232, 1599970464, 3199940928, 6399881857, 12799763715, 25599527430, 51199054860, 102398109721, 204796219443, 409592438886, 819184877773, 1638369755546, 3276739511092, 6553479022184, 13106958044368, 26213916088737, 52427832177475, 104855664354951, 209711328709903, 419422657419807, 838845314839615, 1677690629679230, 3355381259358460, 6710762518716920, 13421525037433840, 26843050074867680, 53686100149735361, 107372200299470722, 214744400598941445, 429488801197882890, 858977602395765780, 1717955204791531561, 3435910409583063122, 6871820819166126244, 13743641638332252489, 27487283276664504978, 54974566553329009956, 109949133106658019912, 219898266213316039825]
Depth: 67

Private Key: 297274491920375905804
Path: [1, 2, 4, 8, 16, 32, 64, 128, 257, 515, 1031, 2062, 4125, 8251, 16502, 33004, 66008, 132016, 264032, 528065, 1056131, 2112262, 4224524, 8449049, 16898098, 33796196, 67592393, 135184787, 270369575, 540739150, 1081478301, 2162956602, 4325913205, 8651826411, 17303652823, 34607305647, 69214611295, 138429222591, 276858445182, 553716890365, 1107433780731, 2214867561462, 4429735122924, 8859470245849, 17718940491698, 35437880983397, 70875761966794, 141751523933589, 283503047867179, 567006095734359, 1134012191468719, 2268024382937438, 4536048765874876, 9072097531749752, 18144195063499505, 36288390126999011, 72576780253998023, 145153560507996047, 290307121015992095, 580614242031984191, 1161228484063968382, 2322456968127936764, 4644913936255873528, 9289827872511747056, 18579655745023494112, 37159311490046988225, 74318622980093976451, 148637245960187952902, 297274491920375905804]
Depth: 68

Private Key: 970436974005023690481
Path: [1, 3, 6, 13, 26, 52, 105, 210, 420, 841, 1683, 3366, 6733, 13467, 26935, 53870, 107740, 215480, 430960, 861921, 1723842, 3447684, 6895369, 13790738, 27581477, 55162955, 110325910, 220651821, 441303643, 882607286, 1765214572, 3530429145, 7060858290, 14121716580, 28243433160, 56486866320, 112973732641, 225947465283, 451894930566, 903789861132, 1807579722264, 3615159444529, 7230318889059, 14460637778118, 28921275556237, 57842551112474, 115685102224948, 231370204449897, 462740408899795, 925480817799590, 1850961635599181, 3701923271198363, 7403846542396726, 14807693084793452, 29615386169586904, 59230772339173809, 118461544678347618, 236923089356695236, 473846178713390473, 947692357426780947, 1895384714853561895, 3790769429707123790, 7581538859414247581, 15163077718828495163, 30326155437656990327, 60652310875313980655, 121304621750627961310, 242609243501255922620, 485218487002511845240, 970436974005023690481]
Depth: 69


can you replicate this with a code
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 22/07/2025, 13:26:35 UTC
do you have code simulating the checksum prefix
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 13/07/2025, 05:45:58 UTC
use mara slipstream
Post
Topic
Board Bitcoin Discussion
Re: $500 puzzle
by
Geshma
on 01/07/2025, 23:35:49 UTC
this information can help alot:

Service Pack Version: A disc with Service Pack 3 (SP3) will have more files than one with SP2 or the original RTM (Release To Manufacturing) version, as service packs include numerous updates and bug fixes.

Edition: While the core files are similar, there might be slight differences between Windows XP Home, Professional, Media Center Edition, or Tablet PC Edition discs.

Language: Different language versions would naturally have different sets of language-specific files.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 06/04/2025, 10:26:49 UTC
I have a BSGS that solves puzzle 60 in 3 seconds.
The problem is that we don't have public keys.  Grin
[/care to share the code , can it be modified to search for public key using hash10]
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 03/04/2025, 14:21:05 UTC
change the base key to 2A32ED54F2B4E35EE (Dec)
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 16/03/2025, 16:22:43 UTC
thank you.
@nomachine
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 15/03/2025, 16:53:30 UTC
care sharing the .cpp file
Post
Topic
Board Development & Technical Discussion
Re: I created smaller secp256k1 just for testing
by
Geshma
on 15/03/2025, 13:44:53 UTC
from ecdsa.ellipticcurve import Point
from ecdsa.curves import SECP256k1

# Secp256k1 parameters
curve = SECP256k1.curve
p = curve.p()
n = SECP256k1.order
G = SECP256k1.generator

# Endomorphism constants
beta = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
lmbda = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
beta2 = (beta * beta) % p
lmbda2 = (lmbda * lmbda) % n

def endomorphism(P, beta_val):
    """Apply x-coordinate endomorphism with given beta"""
    return Point(curve, (beta_val * P.x()) % p, P.y(), order=n)

def negate_point(P):
    """Negate point by flipping y-coordinate"""
    return Point(curve, P.x(), (-P.y()) % p, order=n)

def format_key(P):
    """Format point as uncompressed public key"""
    return f'04{P.x():064x}{P.y():064x}'

# Input private key
k = 5

# Base point
P = k * G

# Generate all 6 keys
keys = [
    # Original y group
    (P, k),
    (endomorphism(P, beta), (k * lmbda) % n),
    (endomorphism(P, beta2), (k * lmbda2) % n),
   
    # Negated y group
    (negate_point(P), (n - k) % n),
    (negate_point(endomorphism(P, beta)), (n - (k * lmbda)) % n),
    (negate_point(endomorphism(P, beta2)), (n - (k * lmbda2)) % n)
]

# Print results
print(f"Uncompressed public key: {format_key(P)}\n")

print("Three x values:")
print(f"x1 = {P.x()}")
print(f"x2 = {endomorphism(P, beta).x()}")
print(f"x3 = {endomorphism(P, beta2).x()}\n")

print("Two y values:")
print(f"y1 = {P.y()}")
print(f"y2 = {negate_point(P).y()}\n")

print("Six public keys with private keys:")
for i, (point, priv) in enumerate(keys, 1):
    print(f"Public key {i}: {format_key(point)} [Private key: {priv}]")
    print(f"  Validated: {point == priv * G}")

sum_y1 = sum(keys[1] for i in range(3))
sum_y2 = sum(keys[1] for i in range(3,6))

print(f"\nSum for y1: {sum_y1} (n = {n})")
print(f"Sum for y2: {sum_y2} (2n = {2*n})")
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 05/03/2025, 15:37:33 UTC
Don't use test on slipstream
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 04/03/2025, 07:48:35 UTC
care sharing the script
Post
Topic
Board Development & Technical Discussion
Re: Cyclone - fastest CPU Satoshi's puzzle solver (only CPU)
by
Geshma
on 26/02/2025, 16:49:19 UTC
puzzle: 67 730fc235 Possibilities : 13

Seed : 2113081982 KHex : 730fc235
Seed : 2179848786 KHex : 730fc235
Seed : 2620256395 KHex : 730fc235
Seed : 3559516538 KHex : 730fc235
Seed : 5559894373 KHex : 730fc235
Seed : 5960477113 KHex : 730fc235
Seed : 6204436682 KHex : 730fc235
Seed : 7016671995 KHex : 730fc235
Seed : 8305603871 KHex : 730fc235
Seed : 8560029709 KHex : 730fc235
Seed : 8633074902 KHex : 730fc235
Seed : 9737552820 KHex : 730fc235
Seed : 9997208084 KHex : 730fc235


seed integer (or "exit" to quit): 8560029709

Seed : 8560029709 KHex : 730fc235

Searching range: 730fc235000000000:730fc235fffffffff (2^36 keys)

================= WORK IN PROGRESS =================
Target Address: 1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9
CPU Threads   : 2
Mkeys/s       : 5.50
Total Checked : 35287381504
Elapsed Time  : 01:46:50
Range         : 730fc235000000000:730fc235fffffffff
Progress      : 51.3499 %
Progress Save : 21
================== FOUND MATCH! ==================
Private Key   : 00000000000000000000000000000000000000000000000730FC235C1942C1AE
Public Key    : 0212209F5EC514A1580A2937BD833979D933199FC230E204C6CDC58872B7D46F75
WIF           : KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qbP2K5cm35XKMND1X1KW
P2PKH Address : 1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9
Total Checked : 35315148800
Elapsed Time  : 01:46:54
Speed         : 5.5030 Mkeys/s

Success! Private key found with seed 8560029709.
Post
Topic
Board Development & Technical Discussion
Re: BSGS + Kangaroo Hybrid
by
Geshma
on 26/02/2025, 08:27:01 UTC
possible , but give and take time
Post
Topic
Board Development & Technical Discussion
Re: Ultra-Lightweight Database with Public Keys (for puzzle btc)
by
Geshma
on 24/02/2025, 09:46:40 UTC
What is Virtual Memory?
Virtual memory is a memory management technique that abstracts physical RAM, providing each process with a large, private address space. It works by:
Paging: Dividing memory into fixed-size pages (e.g., 4 KB on most systems).
Swapping: Moving inactive pages from RAM to a disk-based page file/swap space when RAM is full, and swapping them back when needed.
Translation: Using the Memory Management Unit (MMU) to map virtual addresses (used by programs) to physical addresses (in RAM or swapped to disk).
Key components:
Page File/Swap Space: Disk storage (e.g., pagefile.sys on Windows, /swap on Linux) for swapped pages.
Page Table: Tracks which pages are in RAM or on disk, managed by the OS.

in virtual address space. Physical RAM usage is capped at available RAM (e.g., 16 GB), with excess swapped to disk.

Implementation Details
Keep Original Code: Use the RAM-based SortedDict approach without SQLite or caching modifications (see code below).
Configure Swap Space:
Windows: Ensure the page file is set to "System Managed" or manually increased (e.g., 64 GB for puzzle 64) via System Properties > Advanced > Virtual Memory.
Linux/macOS: Increase swap space (e.g., sudo fallocate -l 64G /swapfile; sudo mkswap /swapfile; sudo swapon /swapfile).
Run as Is: The OS swaps excess SortedDict pages to disk when RAM fills, requiring no code changes beyond ensuring swap space exists.
Post
Topic
Board Development & Technical Discussion
Re: Ultra-Lightweight Database with Public Keys (for puzzle btc)
by
Geshma
on 24/02/2025, 08:16:49 UTC
  • BSGS with Two Grumpy Giants and a Baby: Mon Feb 24 08:04:32 2025
  • Creating babyTable...
  • Baby table saved
  • Loading baby table...
  • Baby table loaded successfully with 741383 entries
  • BSGS Search in progress with Two Grumpy Giants and a Baby
  • m=741455 step=612168 b=574622
  • Key found: 1003651412950
  • Time Spent : 4.15 seconds

number of steps have reduced drastically
Post
Topic
Board Development & Technical Discussion
Re: kangaroos per thread
by
Geshma
on 22/02/2025, 23:30:44 UTC
like 3 tames and 1 wild or 3 wild and 3 tames
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 07/02/2025, 23:49:57 UTC
its a bit mumbled up , wanted your perspective  , and not working also as intended , be gentle:

maybe speed up your Python.

What are you trying to do? It looks like you made some changes to the Python Kangaroo I posted 4 months ago that worked fine (sort of). What are the theoretical bases for your changes though? Some things to consider:

1. I stated several times the code is just for learning purposes. It has its own limitations and had some bugs as well, in edge-cases.
2. Python is very slow, even when using GMP.
3. Kangaroo with only 2 kang types takes longer to solve.
4. Kangaroo that doesn't take advantage of curve symmetry takes longer to solve.
5. Once you change jump tables, alpha, etc. you should really, really know what you're doing, and why. Point doublings (kang == jump_point) are not supported, for private reasons (that code was shrinked down from a larger implementation, I never need to bother with point doublings in any of my algorithms).

Thanks for the input and insight , kang == jump point , enlighten me please.


Code:
import time
import os
import sys
import random
import gmpy2
from math import log2, sqrt, log
from secrets import randbelow

if os.name=='nt':os.system('cls')
else:os.system('clear')
t=time.ctime()
sys.stdout.write(f"\033[?25l")
sys.stdout.write(f"\033[01;33m[+] Kangaroo: {t}\n")
sys.stdout.flush()

modulo = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
order = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141)
Gx = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
Gy = gmpy2.mpz(0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)

PG = (Gx, Gy)

def add(P, Q):
    Z = (0, 0)
    if P == Z:
        return Q
    if Q == Z:
        return P
   
    Px, Py = P
    Qx, Qy = Q

    if Px == Qx:
        if Py == Qy:
            # Use double formula
            inv_2Py = gmpy2.invert((Py << 1) % modulo, modulo)
            m = (3 * Px * Px * inv_2Py) % modulo
        else:
            return Z
    else:
        inv_diff_x = gmpy2.invert(Qx - Px, modulo)
        m = ((Qy - Py) * inv_diff_x) % modulo

    x = (m * m - Px - Qx) % modulo
    y = (m * (Px - x) - Py) % modulo
   
    return (x, y)

def mul(k, P=PG):
    R = (0, 0)
    while k:
        if k & 1:
            R = add(R, P)
        P = add(P, P)
        k >>= 1
    return R

def X2Y(X, y_parity, p=modulo):
    X_cubed = gmpy2.powmod(X, 3, p)
    X_squared = gmpy2.powmod(X, 2, p)
    tmp = gmpy2.f_mod(X_cubed + 7, p)
    Y = gmpy2.powmod(tmp, gmpy2.f_div(gmpy2.add(p, 1), 4), p)
    if y_parity == 1:
        Y = gmpy2.f_mod(-Y, p)
    return Y

def generate_powers_of_two(hop_modulo):
    return [gmpy2.mpz(1 << pw) for pw in range(hop_modulo)]

def handle_solution(solution):
    HEX = "%064x" % abs(solution) 
    dec = int(HEX, 16)
    print(f"\n\033[32m[+] PUZZLE SOLVED \033[0m")
    print(f"\033[32m[+] Private key (dec): {dec} \033[0m")
    with open("KEYFOUNDKEYFOUND.txt", "a") as file:
        file.write("\n\nSOLVED " + t)
        file.write("\nPrivate Key (decimal): " + str(dec))
        file.write("\nPrivate Key (hex): " + HEX)
        file.write(f"\n{'-' * 100}\n")
    return True

def search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two):
    solved = False
    t_values = [lower_range_limit + randbelow(upper_range_limit - lower_range_limit) for _ in range(Nt)]
    T = [mul(ti) for ti in t_values]
    dt = [gmpy2.mpz(0) for _ in range(Nt)]
    w_values = [randbelow(upper_range_limit - lower_range_limit) for _ in range(Nw)]
    W = [add(W0, mul(wk)) for wk in w_values]
    dw = [gmpy2.mpz(0) for _ in range(Nw)]
    print('[+] Tame and wild herds prepared.')   
    Hops, Hops_old = 0, 0
    tame_dps = {}
    wild_dps = {}
    last_print_time = time.time()
    while not solved:
        for k in range(Nt):
            Hops += 1
            pw = int(T[k][0] % hop_modulo) 
            dt[k] = powers_of_two[pw]
            if T[k][0] % DP_rarity == 0:
                x = T[k][0]
                if x in wild_dps:
                    solution = wild_dps[x] - t_values[k]
                    solved = handle_solution(solution)
                    return solved
                tame_dps[x] = t_values[k]
            t_values[k] += dt[k]
            T[k] = add(P[pw], T[k])       
        for k in range(Nw):
            Hops += 1
            pw = int(W[k][0] % hop_modulo) 
            dw[k] = powers_of_two[pw]
            if W[k][0] % DP_rarity == 0: 
                x = W[k][0]
                if x in tame_dps:
                    solution = w_values[k] - tame_dps[x]
                    solved = handle_solution(solution)
                    return solved
                wild_dps[x] = w_values[k]
            w_values[k] += dw[k]
            W[k] = add(P[pw], W[k])

        current_time = time.time()
        elapsed_time = current_time - starttime
        if current_time - last_print_time >= 5:
            time_since_last = current_time - last_print_time
            hops_since_last = Hops - Hops_old
            hops_per_second = hops_since_last / time_since_last if time_since_last > 0 else 0
            last_print_time = current_time
            Hops_old = Hops           
            hours, rem = divmod(elapsed_time, 3600)
            minutes, seconds = divmod(rem, 60)
            elapsed_time_str = f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
            hops = f'{log2(Hops):.2f}' if Hops > 0 else '0.00'
            print(f'[+] [Hops: 2^{hops} <-> {hops_per_second:.0f} h/s] [{elapsed_time_str}]', end='\r', flush=True)
   
    print('\r[+] Hops:', Hops)
    print('[+] Average time to solve: %.2f sec' % ((time.time()-starttime)))

# Configuration for the puzzle
puzzle = 40
compressed_public_key = "03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4"
kangaroo_power = puzzle // 5
lower_range_limit = 2 ** (puzzle - 1)
upper_range_limit = (2**puzzle) - 1
DP_rarity = 1 << ((puzzle - 1) // 2 - 2) // 2 + 2
hop_modulo = round(log(2**puzzle)+5)
Nt = Nw = 2**kangaroo_power
powers_of_two = generate_powers_of_two(hop_modulo)

if len(compressed_public_key) == 66:
    X = gmpy2.mpz(int(compressed_public_key[2:66], 16))
    Y = X2Y(X, int(compressed_public_key[:2]) - 2)
else:
    print("[error] Public key length invalid!")
    sys.exit(1)

W0 = (X,Y)
P = [PG]
for _ in range(puzzle ** 2):
    P.append(add(P[-1], P[-1]))
print('[+] P-table prepared')

# Start kangaroo search
starttime = time.time()
print(f"[+] Puzzle: {puzzle}")
print(f"[+] Lower range limit: {lower_range_limit}")
print(f"[+] Upper range limit: {upper_range_limit}")
print(f"[+] DP: 2^{int(log2(DP_rarity))}({DP_rarity:x})")
print(f"[+] Expected Hops: 2^{log2(2.13 * sqrt(1 << (puzzle-1))):.2f} ({int(2.13 * sqrt(1 << (puzzle-1)))})")

search(P, W0, DP_rarity, Nw, Nt, hop_modulo, upper_range_limit, lower_range_limit, powers_of_two)
print(f"[+] Total time: {time.time() - starttime:.2f} seconds")

  • Kangaroo: Fri Feb  7 22:00:56 2025
  • P-table prepared
  • Puzzle: 40
  • Lower range limit: 549755813888
  • Upper range limit: 1099511627775
  • DP: 2^10(400)
  • Expected Hops: 2^20.59 (1579299)
  • Tame and wild herds prepared.
  • [Hops: 2^20.43 <-> 282835 h/s] [00:00:05]
  • PUZZLE SOLVED
  • Private key (dec): 1003651412950
  • Total time: 5.59 seconds


You can also try my script for learning process.

But I won't give you false hope that this script can solve anything above 60 soon. It's simply beyond the reach of python's capabilities. Grin



[/quote] thanks [/quote]
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
Geshma
on 07/02/2025, 17:27:57 UTC
its a bit mumbled up , wanted your perspective  , and not working also as intended , be gentle:

maybe speed up your Python.

What are you trying to do? It looks like you made some changes to the Python Kangaroo I posted 4 months ago that worked fine (sort of). What are the theoretical bases for your changes though? Some things to consider:

1. I stated several times the code is just for learning purposes. It has its own limitations and had some bugs as well, in edge-cases.
2. Python is very slow, even when using GMP.
3. Kangaroo with only 2 kang types takes longer to solve.
4. Kangaroo that doesn't take advantage of curve symmetry takes longer to solve.
5. Once you change jump tables, alpha, etc. you should really, really know what you're doing, and why. Point doublings (kang == jump_point) are not supported, for private reasons (that code was shrinked down from a larger implementation, I never need to bother with point doublings in any of my algorithms).

Thanks for the input and insight , kang == jump point , enlighten me please.