Search content
Sort by

Showing 3 of 3 results by Uncle Entity
Post
Topic
Board Bitcoin Discussion
Re: The Legend of Satoshi Nakamato, FINAL STEP PUBLISHED.... 4.87 BTC GRAND PRIZE!
by
Uncle Entity
on 11/01/2018, 20:42:56 UTC
I don't read everything in this post, but question is where we need start?Huh

Look in the corner down left.

Only one have something in the middle, and those give us where to start???


i mentioned that before as a possibility but it's wrong, look at the rabbit and he'll tell you where to start.

Does the repeating pattern in the heights still hold true if you start with that flame?

Of course not, but don't let the small details stop the rabbit...
Post
Topic
Board Bitcoin Discussion
Re: The Legend of Satoshi Nakamato, FINAL STEP PUBLISHED.... 4.87 BTC GRAND PRIZE!
by
Uncle Entity
on 07/01/2018, 00:14:58 UTC
I think I have figured out what the chess pieces are about. Was that figured out years ago, I didn't see it mentioned here yet..?

No, no one has said anything provable about the chess pieces, just theories. Care to say what you think they mean?

They're probably Queen Elizabeth I and Robert Devereux, Master of the Horse whom Shakespeare wrote the poem about (in one interpretation).
Post
Topic
Board Bitcoin Discussion
Re: The Legend of Satoshi Nakamato, FINAL STEP PUBLISHED.... 4.87 BTC GRAND PRIZE!
by
Uncle Entity
on 05/01/2018, 05:35:21 UTC
Since everyone's sharing and I'm stuck...

Code:
# start at inside top, order = length + outside_color + inside_color
flames = [('s', 'y', 'b'), ('l', 'y', 'g'), ('l', 'y', 'g'), ('s', 'r', 'g'),
          ('l', 'y', 'b'), ('l', 'r', 'b'), ('s', 'y', 'g'), ('l', 'r', 'b'),
          ('l', 'y', 'g'), ('s', 'y', 'g'), ('l', 'r', 'b'), ('s', 'y', 'g'),
          ('s', 'r', 'b'), ('s', 'r', 'g'), ('l', 'y', 'b'), ('s', 'r', 'b'),
          ('l', 'r', 'b'), ('l', 'r', 'b'), ('s', 'y', 'g'), ('l', 'y', 'g'),
          ('l', 'r', 'g'), ('s', 'y', 'g'), ('l', 'r', 'b'), ('l', 'r', 'b'),
          ('s', 'y', 'b'), ('s', 'y', 'g'), ('l', 'y', 'b'), ('l', 'y', 'b'),
          ('l', 'y', 'g'), ('l', 'y', 'b'), ('s', 'y', 'b'), ('l', 'y', 'b'),
          ('l', 'r', 'b'), ('l', 'y', 'b'), ('l', 'r', 'g'), ('l', 'r', 'b'),
          ('s', 'r', 'b'), ('l', 'y', 'g'), ('l', 'r', 'g'), ('s', 'r', 'b'),
          ('l', 'r', 'g'), ('l', 'y', 'g'), ('s', 'y', 'g'), ('l', 'y', 'g'),
          ('l', 'r', 'b'), ('l', 'r', 'g'), ('l', 'r', 'b'), ('l', 'r', 'b'),
          ('s', 'y', 'g'), ('s', 'y', 'b'), ('l', 'y', 'g'), ('s', 'y', 'g'),
          ('l', 'r', 'g'), ('s', 'y', 'g'), ('s', 'r', 'g'), ('s', 'y', 'g'),
          ('l', 'r', 'b'), ('l', 'r', 'b'), ('l', 'r', 'g'), ('s', 'y', 'g'),
          ('s', 'y', 'b'), ('s', 'y', 'b'), ('l', 'y', 'g'), ('s', 'r', 'b'),
          ('l', 'r', 'b'), ('l', 'r', 'b'), ('s', 'y', 'g'), ('l', 'y', 'g'),
          ('l', 'y', 'g'), ('l', 'r', 'b'), ('l', 'y', 'b'), ('l', 'r', 'g'),
          ('s', 'r', 'g'), ('l', 'r', 'g'), ('l', 'r', 'b'), ('l', 'r', 'g'),
          ('l', 'r', 'b'), ('l', 'r', 'g'), ('s', 'y', 'b'), ('l', 'r', 'g'),
          ('l', 'y', 'g'), ('l', 'r', 'b'), ('l', 'r', 'b'), ('l', 'r', 'b'),
          ('s', 'y', 'b'), ('s', 'y', 'g'), ('l', 'r', 'g'), ('l', 'r', 'b'),
          ('l', 'r', 'g'), ('s', 'r', 'g'), ('s', 'y', 'g'), ('l', 'r', 'g'),
          ('l', 'y', 'g'), ('s', 'y', 'g'), ('l', 'r', 'b'), ('l', 'r', 'b'),
          ('s', 'y', 'b'), ('l', 'y', 'g'), ('l', 'r', 'b'), ('s', 'y', 'g'),
          ('l', 'r', 'g'), ('l', 'y', 'b'), ('s', 'y', 'g'), ('l', 'r', 'g'),
          ('l', 'r', 'g'), ('s', 'y', 'b'), ('l', 'r', 'g'), ('s', 'r', 'b'),
          ('s', 'y', 'b'), ('s', 'y', 'b'), ('l', 'r', 'b'), ('s', 'r', 'b'),
          ('l', 'y', 'b'), ('l', 'y', 'b'), ('s', 'y', 'b'), ('l', 'r', 'b'),
          ('l', 'r', 'g'), ('l', 'r', 'b'), ('l', 'r', 'b'), ('l', 'y', 'g'),
          ('s', 'y', 'g'), ('s', 'y', 'g'), ('l', 'r', 'g'), ('s', 'r', 'b'),
          ('l', 'y', 'b'), ('s', 'y', 'b'), ('s', 'y', 'b'), ('s', 'y', 'b'),
          ('l', 'r', 'b'), ('l', 'y', 'g'), ('l', 'r', 'b'), ('l', 'r', 'g'),
          ('s', 'r', 'g'), ('s', 'y', 'b'), ('l', 'r', 'g'), ('s', 'y', 'b'),
          ('l', 'r', 'b'), ('l', 'r', 'g'), ('s', 'y', 'b'), ('s', 'y', 'b'),
          ('l', 'y', 'g'), ('l', 'r', 'b'), ('l', 'r', 'g'), ('s', 'r', 'g'),
          ('s', 'y', 'b'), ('l', 'r', 'g'), ('l', 'r', 'b'), ('s', 'r', 'g'),
          ('l', 'y', 'b'), ('l', 'y', 'g'), ('s', 'r', 'g'), ('s', 'y', 'g')]

s = ''
for f in flames:
    s += ''.join('0' if f[i] in ('l', 'y', 'g') else '1' for i in range(len(f)))

points = list(s[j:j+6] for j in range(0, len(s), 6))

This gives you an ordering where both points on either side of the halfway point == '011010'. Leaves pointing at individual flames also seems to indicate this interpretation of '0' and '1' is correct. The halfway point also corresponds to a pretty unique pair of flames that overlap with a kind of heart pattern.

There might be a pattern with the even flame lengths (that I can't quite figure out) but it may also just be a 'residue' of the encoding algorithm.

If you skip the first repeating pattern bit then:  5 bits == base32 == number of white squares on the board. I tried a few base32 encodings based on the position of the key with the ribbons (as hex) and the ordering of chessboard numbering schemes and they seem promising but have no way to determine the correct encoding (and brute force isn't an option Grin). I also think that this might not be the correct path since base32 is overkill for hex but not enough for much else but the whole range from '00000' to '11111' is represented (though only 30 unique ones are used).

I don't know is what the 17 leaves is all about, everything else (including the poem; 19 verses) is based upon 19, I tried a few theories but not much came of it.

This is where I'm stuck, I'm pretty sure the decoded flames (as two seperate units) need to be recombined in some way that is indicated in the painting but I just can't see it. I kind of think they are points on an elliptic curve but that's just my current working theory based on watching a random unrelated youtube video where I saw 19 and 38 appearing in an elliptical curve algorithm generated by a proof checker...like I said, totally unrelated. Haven't fully explored this elliptical curve theory but also ran out of time to work on this so...

--edit--

There is definitely some more complex pattern beyond the '100' even length pattern which is why I had the flames grouped in lengths of 4, I can almost see it but not quite there yet.