That's what I wanted! Could you make private key 3?
We must not forget that there are two formulas
The one you used to find the point corresponding to the private key: 2 (or rather 0000000000000000000000000000000000000000000000000000000000000002 to be more precise) it is Duplication of points.
You did it in your example with the base point(but it can be another point)--> 1 + 1 =2
To go now with 3 we need to do --> 2 + 1 = 3 (we have now 2 différents points and we can't doubling them)
For that you need to use the second formula:
modulo = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Px = 89565891926547004231252920425935692360644145829622209833684329913297188986597 (x coordinate point 2)
Py = 12158399299693830322967808612713398636155367887041628176798871954788371653930 (y coordinate point 2)
Qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240 (x coordinate point 1)
not because it is the base point, just because it is the point n°1Qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424 (y coordinate point 1)
dx = (Qx - Px) % modulo --> 34499628904269660561674201530767158034393542375844615658184142552908072257357
dy = (Qy - Py) % modulo --> 95279978516251208768455708490894263304954079172022948940317551626939868843169
c = dy * invert(dx) % modulo --> 23578750110654438173404407907450265080473019639451825850605815020978465167024
Rx = (c*c - Px - Qx) % modulo --> 112711660439710606056748659173929673102114977341539408544630613555209775888121 (
x coordinate of point (2+1 =3)Ry = (c*(Px - Rx) - Py) % modulo --> 25583027980570883691656905877401976406448868254816295069919888960541586679410 (
y coordinate of point (2+1 =3)Can't explain better