Search content
Sort by

Showing 16 of 16 results by denyAKA BLACKANGEL
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 01/05/2025, 16:15:16 UTC
If you both don't stop arguing and flooding the entire thread with your nonsense and I'm only scrolling through your argument, I'll have to hack you, okay, and I'll do it live if necessary, and if you don't believe me, I'll send you a video of how it's done because I already have your IP from both of you, so please f&&& o& a both

Haha ha...lol Can you hack me? Look, if you don't, you'll be the second person I'll ignore, as the person who talks nonsense like a child on your forum.
 ok first send me a declaration with    you name
                                                                                   last name
                                                                                   birth day
                                                                                   who you leave  and dont forget you id to scan and put on that file can you send me PDF ON ME EMAIL  
                                                                                   and write that you accept this just for education ok and i make oficial with video
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 01/05/2025, 12:29:33 UTC
I'll have to hack you, okay, and I'll do it live if necessary, and if you don't believe me, I'll send you a video of how it's done because I already have your IP from both of you, so please f&&& o& a both

Already turned my pants brown. Good luck hacking through both the VPN and the CG-NAT IP of my ISP. I hope you get really quick inside my Linux kernel. Don't forget to also change my Secure Boot password while you're at it.
You are so stupid, do you think I will discuss it with you? You know nothing about security, you think you both can do everything. I am 38 years old, I started learning algorithms when I was 8 years old, when the first modern IBM computers were around, I won't talk much about myself, but I will just say this, I have been in pentesting and security for 30 years now, please leave me in peace.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 01/05/2025, 11:58:43 UTC
Dude, do you have memory problems? You literally called me repeatedly a fool, idiot, child, old man, and many other things. Come on, don't think that just if you missed for a few days everyone forgot lol.

And even if you delete your posts, I still have the quoted ones anyway. Un-edited.

However, you can't really understand how to count bits in a 160-bit number, so it's not like I give a shit about your ramblings anyway. If I ask you how many H160 bits are common between the hashes 0x3 and 0x7 you'll say there's only two common bits, lol, not 159. That's what ChatGPT and lack of any actual background gets you, I guess.

Good luck wasting electricity with 71. I told you straight up ever since you were losing your time with 67 that you'll never find anything with your BS metaphors and straight-up crackpot theories. Maybe after you learn how to actually count that extra 0 bit in front of the H160 your success rate increases from minus infinite to 0% (that is, you realize it's futile to do it, like I did).

I don't really see how someone who can't count, and can't apologize, would ever be taken seriously.



I don't remember the part where I called you an idiot. But you are free to think of yourself that way. It's your choice. lol

Yes, I said you are an old person with a child's brain.
The reason is, You are a living being who only tries to appear knowledgeable, meddles in everything but doesn't show anyone that there is AI in the background. (Since you can write.. Smiley

Now you want to compete with me for knowledge? Sorry, I don't deal with people who think of themselves as FOOLs. It's just a waste of time.

Did you apologize? No.. Again bla bla bla..
For this reason, you are the LAST person to be RESPECTED...

Look, read the article you wrote again. To NOT APOLOGIZE, you are talking like you are knowledgeable again.

Now don't waste any more of my time, mind your own business. (Of course, if you have nothing else to do but show off to people.)
 If you both don't stop arguing and flooding the entire thread with your nonsense and I'm only scrolling through your argument, I'll have to hack you, okay, and I'll do it live if necessary, and if you don't believe me, I'll send you a video of how it's done because I already have your IP from both of you, so please f&&& o& a both
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 29/04/2025, 20:00:05 UTC
Your code is very good but it is brute forcing and what I am doing is not, my code generates private keys from 1 to 160 bits in a few seconds, for the first ten addresses I already have the code in a second I generate real private keys for all 10 of the puzzle.Maybe you have some ideas on how to improvise my code.


Code:
from collections import defaultdict

SOLVED_KEYS = {
    1: 1, 2: 3, 3: 7, 4: 8, 5: 21, 10: 514
}

def calculate_pattern_score(keys):
    score = 0
    patterns = {
        'mersenne': lambda k: all(x == (2**i - 1) for i, x in enumerate(k, start=1)),
        'bitwise': lambda k: all(k[i] == (k[i-1] << 1) + 1 for i in range(1, len(k))),
        'prime': lambda k: sum(is_prime(x) for x in k)
    }
    
    for name, check in patterns.items():
        if name == 'mersenne' and check(keys):
            score += 5
        elif name == 'bitwise' and check(keys):
            score += 3
        elif name == 'prime':
            score += min(check(keys), 2)
    return score

def find_cycles(max_cycle=10):
    cycle_scores = defaultdict(int)
    puzzles = sorted(SOLVED_KEYS.items())
    
    for cycle in range(2, max_cycle+1):
        groups = defaultdict(list)
        for idx, (pn, key) in enumerate(puzzles):
            groups[idx//cycle].append((pn, key))
        
        total_score = sum(
            calculate_pattern_score([k for _, k in group])
            for group in groups.values()
        )
        cycle_scores[cycle] = total_score

    best_cycle = max(cycle_scores, key=cycle_scores.get)
    return best_cycle, cycle_scores

def analyze_groups(cycle_length):
    groups = defaultdict(list)
    puzzles = sorted(SOLVED_KEYS.items())
    for idx, (pn, key) in enumerate(puzzles):
        group_id = idx // cycle_length
        groups[group_id].append((pn, key))
    
    print(f"\nCycle length: {cycle_length}")
    for group_id, group in groups.items():
        pns = [pn for pn, _ in group]
        keys = [key for _, key in group]
        print(f"Group {group_id+1} (Puzzles {pns}): Keys {keys}")

# Compare groups for cycle lengths 2 and 3
analyze_groups(2)
analyze_groups(3)

def is_prime(n):
    if n < 2: return False
    for i in range(2, int(n**0.5)+1):
        if n % i == 0: return False
    return True

# Run analysis
best_cycle, scores = find_cycles()
print(f"Most likely cycle length: {best_cycle}")
print("Cycle scores:", dict(scores))


Code:
%runfile /home/blackangel/untitled21.py --wdir

Cycle length: 2
Group 1 (Puzzles [1, 2]): Keys [1, 3]
Group 2 (Puzzles [3, 4]): Keys [7, 8]
Group 3 (Puzzles [5, 10]): Keys [21, 514]

Cycle length: 3
Group 1 (Puzzles [1, 2, 3]): Keys [1, 3, 7]
Group 2 (Puzzles [4, 5, 10]): Keys [8, 21, 514]
Most likely cycle length: 2
Cycle scores: {2: 10, 3: 10, 4: 2, 5: 5, 6: 2, 7: 2, 8: 2, 9: 2, 10: 2}

Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 29/04/2025, 18:31:21 UTC
please write your opinion, i m very interested.


You can't imagine what I've tried in the last six years.
I even went back in time, generating numbers from 2015—every second of that year.
From my archive of useless scripts:

Code:
import random
from datetime import datetime, timedelta

# List of target Puzzle, each corresponding to a range
target_numbers = [
    (1, 1), (2, 3), (3, 7), (4, 8), (5, 21), (6, 49), (7, 76), (8, 224), (9, 467), (10, 514),
    (11, 1155), (12, 2683), (13, 5216), (14, 10544), (15, 26867), (16, 51510),
    (17, 95823), (18, 198669), (19, 357535), (20, 863317), (21, 1811764),
    (22, 3007503), (23, 5598802), (24, 14428676), (25, 33185509),
    (26, 54538862), (27, 111949941), (28, 227634408), (29, 400708894),
    (30, 1033162084), (31, 2102388551), (32, 3093472814), (33, 7137437912),
    (34, 14133072157), (35, 20112871792), (36, 42387769980), (37, 100251560595),
    (38, 146971536592), (39, 323724968937), (40, 1003651412950),
    (41, 1458252205147), (42, 2895374552463), (43, 7409811047825),
    (44, 15404761757071), (45, 19996463086597), (46, 51408670348612),
    (47, 119666659114170), (48, 191206974700443), (49, 409118905032525),
    (50, 611140496167764), (51, 2058769515153876), (52, 4216495639600700),
    (53, 6763683971478124), (54, 9974455244496707), (55, 30045390491869460),
    (56, 44218742292676575), (57, 138245758910846492), (58, 199976667976342049),
    (59, 525070384258266191), (60, 1135041350219496382), (61, 1425787542618654982),
    (62, 3908372542507822062), (63, 8993229949524469768),
    (64, 17799667357578236628), (65, 30568377312064202855)
]

# Sort the target_numbers list by the first element of each tuple (the range start)
target_numbers.sort(key=lambda x: x[0])

# Specify the start and end date and times for the search
start_datetime_pre = datetime(2015, 1, 1, 0, 0, 0)
end_datetime_pre = datetime(2015, 1, 15, 19, 7, 14)
current_datetime = start_datetime_pre
time_step = timedelta(seconds=1)

# Initialize a set to keep track of found target numbers
found_targets = set()

# Function to find the seed for a single target number
def find_seed_for_target(target_num, current_time):
    num, target_number = target_num
    min_number = 2 ** (num - 1)
    max_number = (2 ** num) - 1

    low_seed = int(current_time.timestamp())
    high_seed = int(end_datetime_pre.timestamp())

    found_seed = None

    while low_seed <= high_seed:
        mid_seed = (low_seed + high_seed) // 2

        random.seed(mid_seed)
        generated_number = random.randint(min_number, max_number)

        if generated_number == target_number:
            found_seed = mid_seed
            break
        elif generated_number < target_number:
            low_seed = mid_seed + 1
        else:
            high_seed = mid_seed - 1

    return found_seed

# Iterate through the time range
while current_datetime <= end_datetime_pre:
    # Find seeds for all target numbers
    found_seeds = [find_seed_for_target(target, current_datetime) for target in target_numbers]

    # Print the results for each target number if found and not already printed
    for i, (num, target_number) in enumerate(target_numbers, start=1):
        if found_seeds[i - 1] is not None and target_number not in found_targets:
            linuxtime = found_seeds[i - 1]
            timestamp = datetime.fromtimestamp(linuxtime)
            formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
            print(f"Puzzle {i} : Private Key : {target_number} | Timestamp: {formatted_time}")
            found_targets.add(target_number)

    # Move to the next second
    current_datetime += time_step


Puzzle 1 : Private Key : 1 | Timestamp: 2015-01-08 09:33:37
Puzzle 2 : Private Key : 3 | Timestamp: 2015-01-12 02:20:26
Puzzle 3 : Private Key : 7 | Timestamp: 2015-01-12 02:20:26
Puzzle 4 : Private Key : 8 | Timestamp: 2015-01-01 05:32:54
Puzzle 5 : Private Key : 21 | Timestamp: 2015-01-10 05:57:01
Puzzle 10 : Private Key : 514 | Timestamp: 2015-01-01 02:46:31
Puzzle 6 : Private Key : 49 | Timestamp: 2015-01-04 16:08:31
Puzzle 7 : Private Key : 76 | Timestamp: 2015-01-01 00:26:36
Puzzle 12 : Private Key : 2683 | Timestamp: 2015-01-01 22:35:35
Puzzle 9 : Private Key : 467 | Timestamp: 2015-01-12 01:35:26
Puzzle 11 : Private Key : 1155 | Timestamp: 2015-01-05 14:58:56
Puzzle 8 : Private Key : 224 | Timestamp: 2015-01-13 00:32:15
Puzzle 13 : Private Key : 5216 | Timestamp: 2015-01-01 23:52:16
Puzzle 14 : Private Key : 10544 | Timestamp: 2015-01-05 03:59:22
Puzzle 16 : Private Key : 51510 | Timestamp: 2015-01-04 16:54:18
Puzzle 17 : Private Key : 95823 | Timestamp: 2015-01-02 16:43:39
Puzzle 15 : Private Key : 26867 | Timestamp: 2015-01-02 13:47:12
Puzzle 22 : Private Key : 3007503 | Timestamp: 2015-01-08 15:41:51

   

can i use you code i mean rewrite or improve ?
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 29/04/2025, 17:53:54 UTC
I finally found how the puzzle was made. I searched the internet for mathematical methods, and there are many, I haven't tested them all yet. I thought maybe someone has a better idea. But I think this hypothesis can work. I haven't finished everything yet. But I can only show one part. Maybe someone has a better idea. I think the creator used mersenne prime numbers (514 = 2 × 257)
bitwise test key = previous_key << n + k ( 21 = 8 << 1 + 5)
arithmetic sequences 3 → 7 → 8 → 21 deltas +4, +1, +13) I wrote more code with the help of AI of course because it can find every error in the code faster and also information. But my idea is that the creator used raylicite methods for every 3 or 5 or 8 address. I haven't tested everything yet. But I want to share it with you. Maybe someone has an idea. But definitely more brains, more ideas and success. one thing is certain that the addresses are generated with some patterns, I have the method for the first 10 addresses,i am currently writing the code for the rest.

ps..
please write your opinion, i m very interested.


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 29 16:24:01 2025

@author: blackangel
"""

import hashlib
from coincurve import PrivateKey

# Known solved private keys (puzzle_number: hex_private_key)
SOLVED_KEYS = {
    1: '0000000000000000000000000000000000000000000000000000000000000001',
    2: '0000000000000000000000000000000000000000000000000000000000000003',
    3: '0000000000000000000000000000000000000000000000000000000000000007',
    4: '0000000000000000000000000000000000000000000000000000000000000008',
    5: '0000000000000000000000000000000000000000000000000000000000000015',
    #6: '0000000000000000000000000000000000000000000000000000000000000031',
    7: '000000000000000000000000000000000000000000000000000000000000004c',
    #8: '00000000000000000000000000000000000000000000000000000000000000e0',
    #9: '00000000000000000000000000000000000000000000000000000000000001d3',
    #10: '0000000000000000000000000000000000000000000000000000000000000202',
    11: '0000000000000000000000000000000000000000000000000000000000000483',
    #12: '0000000000000000000000000000000000000000000000000000000000000a7b',
    13: '0000000000000000000000000000000000000000000000000000000000001460',  
    #14: '0000000000000000000000000000000000000000000000000000000000002930',
    15: '00000000000000000000000000000000000000000000000000000000000068f3',
    16: '000000000000000000000000000000000000000000000000000000000000c936',  
    17: '000000000000000000000000000000000000000000000000000000000001764f',
    18: '000000000000000000000000000000000000000000000000000000000003080d',
    19: '000000000000000000000000000000000000000000000000000000000005749f',
    20: '00000000000000000000000000000000000000000000000000000000000d2c55',  


}





# -------------------------------------------------------------------------------
# Hypothesis 1: Mersenne-like numbers (2^n - 1)
# -------------------------------------------------------------------------------
def test_mersenne_hypothesis():
    print("\nHypothesis 1: Mersenne numbers (2^n - 1)")
    matches = 0
    for puzzle_number in SOLVED_KEYS:
        expected_key = (2 ** puzzle_number) - 1
        expected_hex = format(expected_key, '064x')
        actual_hex = SOLVED_KEYS[puzzle_number]
        if expected_hex == actual_hex:
            matches += 1
            print(f"  Puzzle {puzzle_number}: MATCH (Expected {expected_hex})")
        else:
            print(f"  Puzzle {puzzle_number}: FAIL (Expected {expected_hex}, Actual {actual_hex})")
    print(f"Matches: {matches}/{len(SOLVED_KEYS)}")

# -------------------------------------------------------------------------------
# Hypothesis 2: Hash-based generation (SHA-256 of puzzle number)
# -------------------------------------------------------------------------------
def test_hash_hypothesis():
    print("\nHypothesis 2: SHA-256 of puzzle number")
    matches = 0
    for puzzle_number in SOLVED_KEYS:
        #compute SHA-256 of puzzle number ( "5" -> hash)
        data = str(puzzle_number).encode()
        hash_hex = hashlib.sha256(data).hexdigest()
        
        # Truncate to 64 hex chars (32 bytes) to match private key format
        expected_hex = hash_hex[:64]
        actual_hex = SOLVED_KEYS[puzzle_number]
        
        if expected_hex == actual_hex:
            matches += 1
            print(f"  Puzzle {puzzle_number}: MATCH (Hash {hash_hex})")
        else:
            print(f"  Puzzle {puzzle_number}: FAIL (Hash {hash_hex}, Actual {actual_hex})")
    print(f"Matches: {matches}/{len(SOLVED_KEYS)}")

# -------------------------------------------------------------------------------
# Hypothesis 3: Bitwise shift with increment
# -------------------------------------------------------------------------------
def test_bitwise_hypothesis():
    print("\nHypothesis 3: Bitwise shift + increment")
    matches = 0
    prev_key = 0
    for puzzle_number in sorted(SOLVED_KEYS.keys()):
        actual_key = int(SOLVED_KEYS[puzzle_number], 16)
        if puzzle_number == 1:
            expected_key = 1
        else:
            expected_key = (prev_key << 1) + 1  # e.g., 1 -> 3 (0b11), 3 -> 7 (0b111)
        
        if expected_key == actual_key:
            matches += 1
            print(f"  Puzzle {puzzle_number}: MATCH (Expected {hex(expected_key)})")
        else:
            print(f"  Puzzle {puzzle_number}: FAIL (Expected {hex(expected_key)}, Actual {hex(actual_key)})")
        prev_key = actual_key
    print(f"Matches: {matches}/{len(SOLVED_KEYS)}")

# -------------------------------------------------------------------------------
# Hypothesis 4: Address generation from private key (for verification)
# -------------------------------------------------------------------------------
def generate_address(private_key_hex):
    private_key = PrivateKey.from_hex(private_key_hex)
    public_key = private_key.public_key.format().hex()
    return public_key  # Simplified for demonstration

# -------------------------------------------------------------------------------
# Main Execution
# -------------------------------------------------------------------------------
if __name__ == "__main__":
    print("Testing hypotheses for private key generation...")
    
    # Test Hypothesis 1: Mersenne numbers
    test_mersenne_hypothesis()
    
    # Test Hypothesis 2: Hash-based generation
    test_hash_hypothesis()
    
    # Test Hypothesis 3: Bitwise shift
    test_bitwise_hypothesis()

    # Example: Generate address for Puzzle 1's key
    puzzle_1_key = SOLVED_KEYS[1]
    print(f"\nExample: Address for Puzzle 1 (Public Key): {generate_address(puzzle_1_key)}")  




%runfile /home/blackangel/untitled20.py --wdir
Testing hypotheses for private key generation...

Hypothesis 1: Mersenne numbers (2^n - 1)
  Puzzle 1: MATCH (Expected 0000000000000000000000000000000000000000000000000000000000000001)
  Puzzle 2: MATCH (Expected 0000000000000000000000000000000000000000000000000000000000000003)
  Puzzle 3: MATCH (Expected 0000000000000000000000000000000000000000000000000000000000000007)
  Puzzle 4: FAIL (Expected 000000000000000000000000000000000000000000000000000000000000000f, Actual 0000000000000000000000000000000000000000000000000000000000000008)
  Puzzle 5: FAIL (Expected 000000000000000000000000000000000000000000000000000000000000001f, Actual 0000000000000000000000000000000000000000000000000000000000000015)
  Puzzle 7: FAIL (Expected 000000000000000000000000000000000000000000000000000000000000007f, Actual 000000000000000000000000000000000000000000000000000000000000004c)
  Puzzle 11: FAIL (Expected 00000000000000000000000000000000000000000000000000000000000007ff, Actual 0000000000000000000000000000000000000000000000000000000000000483)
  Puzzle 13: FAIL (Expected 0000000000000000000000000000000000000000000000000000000000001fff, Actual 0000000000000000000000000000000000000000000000000000000000001460)
  Puzzle 15: FAIL (Expected 0000000000000000000000000000000000000000000000000000000000007fff, Actual 00000000000000000000000000000000000000000000000000000000000068f3)
  Puzzle 16: FAIL (Expected 000000000000000000000000000000000000000000000000000000000000ffff, Actual 000000000000000000000000000000000000000000000000000000000000c936)
  Puzzle 17: FAIL (Expected 000000000000000000000000000000000000000000000000000000000001ffff, Actual 000000000000000000000000000000000000000000000000000000000001764f)
  Puzzle 18: FAIL (Expected 000000000000000000000000000000000000000000000000000000000003ffff, Actual 000000000000000000000000000000000000000000000000000000000003080d)
  Puzzle 19: FAIL (Expected 000000000000000000000000000000000000000000000000000000000007ffff, Actual 000000000000000000000000000000000000000000000000000000000005749f)
  Puzzle 20: FAIL (Expected 00000000000000000000000000000000000000000000000000000000000fffff, Actual 00000000000000000000000000000000000000000000000000000000000d2c55)
Matches: 3/14

Hypothesis 2: SHA-256 of puzzle number
  Puzzle 1: FAIL (Hash 6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b, Actual 0000000000000000000000000000000000000000000000000000000000000001)
  Puzzle 2: FAIL (Hash d4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35, Actual 0000000000000000000000000000000000000000000000000000000000000003)
  Puzzle 3: FAIL (Hash 4e07408562bedb8b60ce05c1decfe3ad16b72230967de01f640b7e4729b49fce, Actual 0000000000000000000000000000000000000000000000000000000000000007)
  Puzzle 4: FAIL (Hash 4b227777d4dd1fc61c6f884f48641d02b4d121d3fd328cb08b5531fcacdabf8a, Actual 0000000000000000000000000000000000000000000000000000000000000008)
  Puzzle 5: FAIL (Hash ef2d127de37b942baad06145e54b0c619a1f22327b2ebbcfbec78f5564afe39d, Actual 0000000000000000000000000000000000000000000000000000000000000015)
  Puzzle 7: FAIL (Hash 7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451, Actual 000000000000000000000000000000000000000000000000000000000000004c)
  Puzzle 11: FAIL (Hash 4fc82b26aecb47d2868c4efbe3581732a3e7cbcc6c2efb32062c08170a05eeb8, Actual 0000000000000000000000000000000000000000000000000000000000000483)
  Puzzle 13: FAIL (Hash 3fdba35f04dc8c462986c992bcf875546257113072a909c162f7e470e581e278, Actual 0000000000000000000000000000000000000000000000000000000000001460)
  Puzzle 15: FAIL (Hash e629fa6598d732768f7c726b4b621285f9c3b85303900aa912017db7617d8bdb, Actual 00000000000000000000000000000000000000000000000000000000000068f3)
  Puzzle 16: FAIL (Hash b17ef6d19c7a5b1ee83b907c595526dcb1eb06db8227d650d5dda0a9f4ce8cd9, Actual 000000000000000000000000000000000000000000000000000000000000c936)
  Puzzle 17: FAIL (Hash 4523540f1504cd17100c4835e85b7eefd49911580f8efff0599a8f283be6b9e3, Actual 000000000000000000000000000000000000000000000000000000000001764f)
  Puzzle 18: FAIL (Hash 4ec9599fc203d176a301536c2e091a19bc852759b255bd6818810a42c5fed14a, Actual 000000000000000000000000000000000000000000000000000000000003080d)
  Puzzle 19: FAIL (Hash 9400f1b21cb527d7fa3d3eabba93557a18ebe7a2ca4e471cfe5e4c5b4ca7f767, Actual 000000000000000000000000000000000000000000000000000000000005749f)
  Puzzle 20: FAIL (Hash f5ca38f748a1d6eaf726b8a42fb575c3c71f1864a8143301782de13da2d9202b, Actual 00000000000000000000000000000000000000000000000000000000000d2c55)
Matches: 0/14

Hypothesis 3: Bitwise shift + increment
  Puzzle 1: MATCH (Expected 0x1)
  Puzzle 2: MATCH (Expected 0x3)
  Puzzle 3: MATCH (Expected 0x7)
  Puzzle 4: FAIL (Expected 0xf, Actual 0x8)
  Puzzle 5: FAIL (Expected 0x11, Actual 0x15)
  Puzzle 7: FAIL (Expected 0x2b, Actual 0x4c)
  Puzzle 11: FAIL (Expected 0x99, Actual 0x483)
  Puzzle 13: FAIL (Expected 0x907, Actual 0x1460)
  Puzzle 15: FAIL (Expected 0x28c1, Actual 0x68f3)
  Puzzle 16: FAIL (Expected 0xd1e7, Actual 0xc936)
  Puzzle 17: FAIL (Expected 0x1926d, Actual 0x1764f)
  Puzzle 18: FAIL (Expected 0x2ec9f, Actual 0x3080d)
  Puzzle 19: FAIL (Expected 0x6101b, Actual 0x5749f)
  Puzzle 20: FAIL (Expected 0xae93f, Actual 0xd2c55)
Matches: 3/14

Example: Address for Puzzle 1 (Public Key): 0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798  

 

Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 24/04/2025, 08:18:08 UTC
ok i give you 6 milion dolar  Cool Cool
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 23/04/2025, 01:45:25 UTC
to all who argue here all the time and fill the thread with unnecessary words please stop and just leave your opinion for each forwarded code so we can all help each other and solve this puzzle to the end thank you all
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 23/04/2025, 01:37:25 UTC
TNX for sharing,very well i look later what you have here  Smiley

Hy guys!
Maybe it will be useful to someone: Lambda method sim with
1. Thread parallelism
2. Batch memory access
3. Precomputed jump tables for preventing sync (3 jump‑tables, d=3)
4. Interleaved steps
5. Cuckoo for traps
6. Distinguished points
7. Windowed method

Speed up to 50000 times than original Pollard Rho method.
And I'm lazy guy. Do it with real computing without any chances to solve 135 is not for me. But like a POC - why not.
Code:
E:\Python\The_game>python The_game.py -h
usage: The_game.py [-h] [--W W] [--T T] [--K K] [--trials TRIALS] [--max_iters MAX_ITERS] [--threads THREADS] [--speed SPEED] [--mem_latency MEM_LATENCY]

Simulate Pollard ρ with multiple kangaroos and throughput estimate.

optional arguments:
  -h, --help            show this help message and exit
  --W W                 Range size W
  --T T                 Number of traps T
  --K K                 Jump table size K
  --trials TRIALS       Number of trials
  --max_iters MAX_ITERS
                        Max steps per trial
  --threads THREADS     Number of kangaroos per trial
  --speed SPEED         Predicted total CPU point‑addition throughput (p‑adds/s)
  --mem_latency MEM_LATENCY
                        DDR RAM latency per random access (s)
Code:
#!/usr/bin/env python3
import argparse
import random
import math
from tqdm import tqdm
from typing import List, Optional

def simulate_kangaroos(W: int, T: int, K: int, trials: int, max_iters: int,
                       threads: int, speed: Optional[float], mem_latency: float):
    L = W // T
    base_jump = math.isqrt(L)
    batch_size = 1024

    cf_mem_bytes = 256 * 1024**3
    bytes_per_entry = cf_mem_bytes / T
    bits_per_entry = bytes_per_entry * 8
    fp_rate = 2 ** (-bits_per_entry)
    print(f"W = {W:,}, T = {T:,}, L = {L:,}, sqrt(L) = {base_jump:,}")
    print(f"p = T/W = {T/W:.3e}, expected steps = {W/T:,.0f}")
    print(f"Threads: {threads} (split into 3 jump tables)")
    print(f"Cuckoo filter @256 GiB → {bytes_per_entry:.3f} B/entry (~{bits_per_entry:.2f} bits), FP ≈ {fp_rate:.2%}\n")

    if speed is not None:
        print(f"Theoretical total CPU p‑adds/s: {speed:,.0f}")
        print(f"Implied per‑thread p‑adds/s : {speed/threads:,.0f}")
        print(f"DDR RAM latency        : {mem_latency*1e9:.1f} ns")
        print(f"Batch memory access    : {batch_size} keys per access\n")
    else:
        print()

    successes = 0
    hits_per_trial: List[Optional[int]] = []

    for t in range(1, trials + 1):
        jump_tables = [
            [random.randint(1, base_jump) for _ in range(K)]
            for _ in range(3)
        ]
        X = [random.randrange(W) for _ in range(threads)]
        hit_step: Optional[int] = None
        hit_trap: Optional[int] = None
        hit_thread: Optional[int] = None

        with tqdm(total=max_iters, desc=f"Trial {t}", unit="step") as bar:
            for step in range(1, max_iters + 1):
                for i in range(threads):
                    if hit_step is not None:
                        break
                    tbl = jump_tables[i % 3]
                    idx = X[i] % K
                    X[i] = (X[i] + tbl[idx]) % W
                    if X[i] % L == 0:
                        hit_step = step
                        hit_thread = i + 1
                        hit_trap = X[i] // L
                bar.update(1)
                if hit_step is not None:
                    break

        if hit_step is not None:
            print(f"  Kangaroo {hit_thread}: HIT at step {hit_step:,} (trap idx = {hit_trap:,})\n")
            successes += 1
        else:
            print(f"  MISS after {max_iters:,} steps\n")

        hits_per_trial.append(hit_step)

    print(f"Total hits: {successes} / {trials}")
    hit_steps = [h for h in hits_per_trial if h is not None]
    if hit_steps:
        mn = min(hit_steps)
        mx = max(hit_steps)
        avg = sum(hit_steps) / len(hit_steps)
        print(f"Steps to first hit: min={mn:,}, max={mx:,}, avg={avg:,.1f}")

    if speed is not None and hit_steps:
        comp_cap = speed
        mem_cap = threads * batch_size / mem_latency
        pred_adds = min(comp_cap, mem_cap)

        wins_per_sec = pred_adds / avg
        wins_floor = math.floor(wins_per_sec * 10) / 10
        pts_per_sec = wins_per_sec * W
        if pts_per_sec >= 1e21:
            human = f"{pts_per_sec/1e21:.3f} Zpps"
        elif pts_per_sec >= 1e18:
            human = f"{pts_per_sec/1e18:.3f} Epps"
        else:
            human = f"{pts_per_sec:.3e} pts/s"
        full_pts = f"{pts_per_sec:,.0f} pts/s"

        overhead = 0.20
        eff_adds = pred_adds * (1 - overhead)
        eff_wins = eff_adds / avg
        eff_wins_floor = math.floor(eff_wins * 10) / 10
        eff_pts = eff_wins * W
        if eff_pts >= 1e21:
            human_eff = f"{eff_pts/1e21:.3f} Zpps"
        elif eff_pts >= 1e18:
            human_eff = f"{eff_pts/1e18:.3f} Epps"
        else:
            human_eff = f"{eff_pts:.3e} pts/s"
        full_eff_pts = f"{eff_pts:,.0f} pts/s"

        nohit_pts_per_sec = (speed / max_iters) * W
        eff_nohit = nohit_pts_per_sec * (1 - overhead)
        if eff_nohit >= 1e21:
            human_nohit = f"{eff_nohit/1e21:.3f} Zpps"
        elif eff_nohit >= 1e18:
            human_nohit = f"{eff_nohit/1e18:.3f} Epps"
        else:
            human_nohit = f"{eff_nohit:.3e} pts/s"
        full_nohit = f"{eff_nohit:,.0f} pts/s"

        print("\n--- Theoretical throughput estimate ---")
        print(f"Compute‑bound    : {comp_cap:,.0f} p‑adds/s")
        print(f"Memory‑bound     : {mem_cap:,.0f} p‑adds/s")
        print(f"Predicted p‑adds : {pred_adds:,.0f} p‑adds/s")
        print(f"Predicted windows: {wins_floor:.1f} win/s")
        print(f"Predicted points : {full_pts} ({human})")
        print(f"After ~20% overhead (thread sync, atomic ops, etc):")
        print(f"  Effective windows: {eff_wins_floor:.1f} win/s")
        print(f"  Effective points : {full_eff_pts} ({human_eff})")
        print(f"  Effective no‑hit scanning: {full_nohit} ({human_nohit})")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Simulate Pollard ρ with multiple kangaroos and throughput estimate.")
    parser.add_argument("--W", type=int, default=10**8, help="Range size W")
    parser.add_argument("--T", type=int, default=10**4, help="Number of traps T")
    parser.add_argument("--K", type=int, default=64, help="Jump table size K")
    parser.add_argument("--trials", type=int, default=5, help="Number of trials")
    parser.add_argument("--max_iters", type=int, default=None, help="Max steps per trial")
    parser.add_argument("--threads", type=int, default=2, help="Number of kangaroos per trial")
    parser.add_argument("--speed", type=float, default=None, help="Predicted total CPU point‑addition throughput (p‑adds/s)")
    parser.add_argument("--mem_latency", type=float, default=100e-9, help="DDR RAM latency per random access (s)")
    args = parser.parse_args()
    W = args.W
    T = args.T
    default_iters = int((W / T) * 2)
    max_iters = args.max_iters if args.max_iters is not None else default_iters
    simulate_kangaroos(W, T, args.K, args.trials, max_iters, args.threads, args.speed, args.mem_latency)

And results
Code:
E:\Python\The_game>python The_game.py --W 1000000000000000000 --T 500000000000 --K 1414 --trials 10  --max_iters 200000 --threads 32 --speed 150000000
W = 1,000,000,000,000,000,000, T = 500,000,000,000, L = 2,000,000, sqrt(L) = 1,414
p = T/W = 5.000e-07, expected steps = 2,000,000
Threads: 32 (split into 3 jump tables)
Cuckoo filter @256 GiB → 0.550 B/entry (~4.40 bits), FP ≈ 4.74%

Theoretical total CPU p‑adds/s: 150,000,000
Implied per‑thread p‑adds/s : 4,687,500
DDR RAM latency        : 100.0 ns
Batch memory access    : 1024 keys per access

Trial 1:   5%|████████▊                                                                                                                                                                  | 10296/200000 [00:00<00:01, 161824.75step/s]
  Kangaroo 9: HIT at step 10,296 (trap idx = 335,485,616,764)

Trial 2:   4%|███████▍                                                                                                                                                                    | 8597/200000 [00:00<00:01, 149881.87step/s]
  Kangaroo 2: HIT at step 8,597 (trap idx = 291,414,423,644)

Trial 3:   7%|███████████▏                                                                                                                                                               | 13113/200000 [00:00<00:01, 156095.86step/s]
  Kangaroo 1: HIT at step 13,113 (trap idx = 371,862,088,299)

Trial 4:  49%|████████████████████████████████████████████████████████████████████████████████████▍                                                                                      | 98742/200000 [00:00<00:00, 155103.27step/s]
  Kangaroo 21: HIT at step 98,742 (trap idx = 209,929,031,829)

Trial 5:   7%|███████████▉                                                                                                                                                               | 13926/200000 [00:00<00:01, 158877.92step/s]
  Kangaroo 2: HIT at step 13,926 (trap idx = 69,456,967,361)

Trial 6:   3%|█████▊                                                                                                                                                                      | 6828/200000 [00:00<00:01, 152403.27step/s]
  Kangaroo 4: HIT at step 6,828 (trap idx = 5,824,479,995)

Trial 7:  67%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉                                                        | 134098/200000 [00:00<00:00, 155850.07step/s]
  Kangaroo 31: HIT at step 134,098 (trap idx = 140,162,118,610)

Trial 8:  18%|██████████████████████████████▋                                                                                                                                            | 35918/200000 [00:00<00:01, 158432.59step/s]
  Kangaroo 23: HIT at step 35,918 (trap idx = 340,417,309,332)

Trial 9:  12%|████████████████████▌                                                                                                                                                      | 24030/200000 [00:00<00:01, 159903.80step/s]
  Kangaroo 24: HIT at step 24,030 (trap idx = 332,023,294,905)

Trial 10:  77%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌                                       | 153355/200000 [00:00<00:00, 159300.14step/s]
  Kangaroo 29: HIT at step 153,355 (trap idx = 269,327,468,331)

Total hits: 10 / 10
Steps to first hit: min=6,828, max=153,355, avg=49,890.3

--- Theoretical throughput estimate ---
Compute‑bound    : 150,000,000 p‑adds/s
Memory‑bound     : 327,680,000,000 p‑adds/s
Predicted p‑adds : 150,000,000 p‑adds/s
Predicted windows: 3006.5 win/s
Predicted points : 3,006,596,472,661,018,148,864 pts/s (3.007 Zpps)
After ~20% overhead (thread sync, atomic ops, etc):
  Effective windows: 2405.2 win/s
  Effective points : 2,405,277,178,128,814,309,376 pts/s (2.405 Zpps)
  Effective no‑hit scanning: 600,000,000,000,000,000,000 pts/s (600.000 Epps)



Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 20/04/2025, 17:10:17 UTC
046aa3ec6fbe6188788ee0a5a18f95e405741f1b636559b355a857817a2e921160c85ca3b348638 d82ec4c3a986b2c58062b10a499afd5516581591127559925df  can someone check if this pubk has a 68bit scalar                   
   65
Post
Topic
Board Bitcoin Discussion
Merits 1 from 1 user
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 20/04/2025, 06:57:26 UTC
⭐ Merited by xandry (1)
the code from zahid888 C++ its a lietl more faster




#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <mutex>
#include <atomic>
#include <random>
#include <unordered_set>
#include <string>
#include <iomanip>


constexpr int64_t START_SEED = 1706200000;
constexpr int64_t END_SEED = 10'000'000'000;
constexpr int BATCH_SIZE = 100'000;
const size_t NUM_THREADS = []() {
    unsigned cores = std::thread::hardware_concurrency();
    return cores > 50 ? cores : 80;
}();

std::mutex file_mutex;
std::atomic<int64_t> counter(START_SEED);
std::atomic<int> found_counter(0);
const std::unordered_set<uint32_t> TARGET_VALUES = {
    0xb862a62e, 0x9de820a7, 0xe9ae4933,
    0xe02b35a3, 0xade6d7ce, 0xefae164c,
    0x9d18b63a, 0xfc07a182, 0xf7051f27,
    0xbebb3940
};

void worker() {
    std::mt19937 gen;
    std::uniform_int_distribution<uint32_t> dist(0x80000000, 0xFFFFFFFF);
   
    while (true) {
        int64_t current_batch = counter.fetch_add(BATCH_SIZE);
        if (current_batch >= END_SEED) break;
       
        int64_t batch_end = std::min(current_batch + BATCH_SIZE, END_SEED);
        std::vector<std::pair<int64_t, uint32_t>> found;
       
        for (int64_t seed = current_batch; seed < batch_end; ++seed) {
            gen.seed(static_cast<uint32_t>(seed));
            uint32_t b = dist(gen);
           
            if (TARGET_VALUES.count(b)) {
                found.emplace_back(seed, b);
            }
        }
       
        if (!found.empty()) {
            std::lock_guard<std::mutex> lock(file_mutex);
            std::ofstream out("found_seeds.txt", std::ios::app);
            for (const auto& [seed, value] : found) {
                out << "seed: " << seed << " - FOUND! 0x"
                    << std::hex << std::setw(Cool << std::setfill('0') << value << "\n";
            }
            found_counter += found.size();
        }
    }
}

void print_progress() {
    const int64_t total = END_SEED - START_SEED;
    while (counter < END_SEED) {
        int64_t processed = counter - START_SEED;
        double percent = (processed * 100.0) / total;
       
        int bar_width = 50;
        int pos = bar_width * (percent / 100.0);
       
        std::cout << "\rProgress: [";
        for (int i = 0; i < bar_width; ++i) {
            std::cout << (i < pos ? "█" : "░");
        }
        std::cout << "] " << std::fixed << std::setprecision(2) << percent
                  << "% | Found: " << found_counter.load() << std::flush;
       
        std::this_thread::sleep_for(std::chrono::milliseconds(200));
    }
}

int main() {
    std::vector<std::thread> threads;
    std::cout << "Starting search with " << NUM_THREADS << " threads...\n";
   
    for (size_t i = 0; i < NUM_THREADS; ++i) {
        threads.emplace_back(worker);
    }
   
   
    std::thread progress_thread(print_progress);
   

    for (auto& t : threads) {
        t.join();
    }
   

    progress_thread.join();
   
    std::cout << "\n\nSearch complete. Found " << found_counter << " matches.\n";
    return 0;
}



you can compiling >>>>>>  g++ -O3 -std=c++17 -pthread seed_search.cpp -o seed_search



Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 14/04/2025, 07:50:57 UTC
you need a more knowledge even a more inteligent smart ,dont be negativ you dont know me,be a positiv me frend.i write a more 2000+ brute vanity and experiment code just for bitcoin i try evry algorithm for mathe.... i wish you luck me frend just keep search
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 14/04/2025, 05:56:27 UTC
 i help a little to all,evry time what you find you save and you can see the frequenz and distanz of address     f = 1/T this can help a loot   you dont need a loot of GPU more it's  a luck and knowledg i use python i write a self,not vanity just random address generate and some algorithm  Cool
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 13/04/2025, 23:17:10 UTC
i can provide more address with 16 exact caracter but not today  Grin Grin
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 13/04/2025, 21:42:13 UTC
ahhahha you need more not one and when you have luck you have a match
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
denyAKA BLACKANGEL
on 13/04/2025, 21:03:00 UTC
i hoppe this help,if  you have a succes you can write 

                                                  1f3010a2b8793d347f      19vkiEaebeLmrjJkuoYtLetpobkjWLcv9D
                                                  177590b696ee793041      19vkiEah776mXf2m8nXRBFSyKeffPDiwpL 
                                                  1f4eb0b57715269183      19vkiEaJV6PWrWTGhqBhfVvZqJ1Fo9NFTD
                                                  16833c184839cc383a      19vkiEaNn9TRKZ4Y7gyNNob4WTEnc5D5FU
                                                  1ae324e2c108b33737      19vkiEakZw2EengwkWRBikpXAbL2TzFJHW
                                                  17716a73fe1e9f233b      19vkiEatqjCiA4qzVYmVTTgvZVm1499Yqg
                                                  1873f9c83bdd2ddc5b      19vkiEaq6wcVd9VzxGu3wPLcqPVmAY44b2
                                                  17ecea3fd10f9309a1      19vkiEa49TuRsfmk5gokx2uQQFzmyDH3sN
                                                  17ecea3fd123280cdc      19vkiEaWGUW6Phcnr6KLGbKNN3q2P9PwjW
                                                  1e5b4754a58d3fc59d      19vkiEaSFApUaWLea6NCtUWwYZkyD9vGM8
                                                  19b0b29424564ba65e      19vkiEaBi5VkRbADHVH3gNSJTrynNwEjZS
                                                  1e857a4c954bc9896a      19vkiEaBGF19bq7nhKUAM91WR7p5LQL68
                                                  1f171b6772f3daf7b3      19vkiEafXjcmpggNZijSULAZ6XT9M8j6MX
                                                  1f1568dbd4f8378a26      19vkiEaGNcbwBf8QVPh5cy3LmyENBYcuuM
                                                  177590b696dc4dedc2      19vkiEaXNynCbJteXbTPdsE9x9cDcd88bq
                                                  13871339bbcf9f2539      19vkiEaZmk6Jwf7Ep4oYviwht3brThkaE1
                                                  15f74cc42bac0c9077      19vkiE1v5PagT8TPkP3JWN9MGiH5ooQiQ