Search content
Sort by

Showing 11 of 11 results by kachev87
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 18/04/2024, 12:43:17 UTC
Like Bitcoin's price, this thread pumps sometimes with interesting info for a few pages, and then other times it dumps a few pages into red.
The past few pages are pretty red.
k3ntINA finally making public his Zodiac circle .gif that cracks #66 using Adobe Illustrator.
kachev87 with no proper programing skills saves some time for the would be c++ programmer to convert his ChatGTP python code to run in full GPU mode.
joseperal finding puzzle #30 is already emptied.
Waveilona who finally solved the puzzle but is holding it hostage.


You stupid or what? Are everyone here AI specialists?! I don't think so! How many self writen programs are you using for this puzzle? How many ideas you bring to the table? How many years before the second funding of the puzzle you were at this forum? So my advice is to keep your stupid opinions at home! If you have any ideas work on them don't fill the topic with our crap!
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 17/04/2024, 04:26:51 UTC
the private key for ripemd160 hash d39c4704664e1deb76c9331e637564c257d68a08 is

000000000000000000000000000000000000000000000000000000003d94cd64

It belongs to puzzle - 30, already emptied.

address: 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps

That hash was an example...
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 17/04/2024, 00:18:56 UTC
import bitcoin
import ecdsa
import base58
import random
import logging

# Function to convert private key to Wallet Import Format (WIF)
def private_key_to_wif(private_key):
    wif = bitcoin.encode_privkey(bitcoin.decode_privkey(private_key, 'hex'), 'wif')
    return wif

# Function to convert private key to Bitcoin address (P2PKH)
def private_key_to_address(private_key):
    sk = ecdsa.SigningKey.from_string(bytes.fromhex(private_key), curve=ecdsa.SECP256k1)
    vk = sk.get_verifying_key()
    compressed_vk = vk.to_string('compressed').hex()
    address = bitcoin.pubkey_to_address(compressed_vk)
    return address

# Function to calculate Hash 160 of a Bitcoin address
def address_to_hash160(address):
    decoded_address = base58.b58decode_check(address)
    return decoded_address[1:].hex()

# Function to generate a Bitcoin private key and check if the corresponding address matches the target address
def generate_private_key(target_hash160):
    while True:
        try:
            num_objects = random.randint(15,15)
            random_values = random.sample(range(0, 29), num_objects)
            random_values.append(29)
            private_key_num = sum([2 ** power for power in random_values])
            private_key = format(private_key_num, '064x')
            bitcoin_address = private_key_to_address(private_key)
            hash160 = address_to_hash160(bitcoin_address)

            print("Private Key:", private_key)

            if hash160 == target_hash160:
                with open('private_key.txt', 'w') as file:
                    file.write(private_key)
                logging.info("Private key saved to 'private_key.txt' file.")
                break
        except Exception as e:
            logging.error(f"Error: {str(e)}")

def main():
    target_hash160 = 'd39c4704664e1deb76c9331e637564c257d68a08'
    logging.basicConfig(filename='bitcoin_keygen.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
    logging.info("Generating private keys...")
    generate_private_key(target_hash160)

if __name__ == "__main__":
    main()



Can anyone make windows CMD program with the Idea of this script for multiple GPUs?
 The changebles to be:

 num_objects = random.randint(15,15) - THESE VALUES
            random_values = random.sample(range(0, 29), num_objects) - THESE VALUES
            random_values.append(29) - THIS VALUE
 target_hash160 = 'd39c4704664e1deb76c9331e637564c257d68a08' - THIS VALUE

I am sorry for asking but I don`t have the proper programing skills to do this.
I`ve been playing with python to try to run this script with GPUs but... I just can`t ;(
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 21/11/2023, 12:47:17 UTC
Has anyone tried this approach? The count of powers of 2 as sum?

Number 1: 2^0
Number 3: 2^0 + 2^1
Number 7: 2^0 + 2^1 + 2^2
Number 8: 2^3
Number 21: 2^0 + 2^2 + 2^4
Number 49: 2^0 + 2^4 + 2^5
Number 76: 2^2 + 2^3 + 2^6
Number 224: 2^5 + 2^6 + 2^7
Number 467: 2^0 + 2^1 + 2^4 + 2^6 + 2^7 + 2^8
Number 514: 2^1 + 2^9
Number 1155: 2^0 + 2^1 + 2^7 + 2^10
Number 2683: 2^0 + 2^1 + 2^3 + 2^4 + 2^5 + 2^6 + 2^9 + 2^11
Number 5216: 2^5 + 2^6 + 2^10 + 2^12
Number 10544: 2^4 + 2^5 + 2^8 + 2^11 + 2^13
Number 26867: 2^0 + 2^1 + 2^4 + 2^5 + 2^6 + 2^7 + 2^11 + 2^13 + 2^14
Number 51510: 2^1 + 2^2 + 2^4 + 2^5 + 2^8 + 2^11 + 2^14 + 2^15
Number 95823: 2^0 + 2^1 + 2^2 + 2^3 + 2^6 + 2^9 + 2^10 + 2^12 + 2^13 + 2^14 + 2^16
Number 198669: 2^0 + 2^2 + 2^3 + 2^11 + 2^16 + 2^17
Number 357535: 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^7 + 2^10 + 2^12 + 2^13 + 2^14 + 2^16 + 2^18
Number 863317: 2^0 + 2^2 + 2^4 + 2^6 + 2^10 + 2^11 + 2^13 + 2^16 + 2^18 + 2^19
Number 1811764: 2^2 + 2^4 + 2^5 + 2^8 + 2^10 + 2^13 + 2^15 + 2^16 + 2^17 + 2^19 + 2^20
Number 3007503: 2^0 + 2^1 + 2^2 + 2^3 + 2^10 + 2^13 + 2^14 + 2^15 + 2^16 + 2^18 + 2^19 + 2^21
Number 5598802: 2^1 + 2^4 + 2^6 + 2^9 + 2^10 + 2^11 + 2^13 + 2^14 + 2^16 + 2^18 + 2^20 + 2^22
Number 14428676: 2^2 + 2^9 + 2^11 + 2^13 + 2^18 + 2^19 + 2^20 + 2^22 + 2^23
Number 33185509: 2^0 + 2^2 + 2^5 + 2^6 + 2^7 + 2^9 + 2^10 + 2^11 + 2^12 + 2^14 + 2^17 + 2^19 + 2^20 + 2^21 + 2^22 + 2^23 + 2^24
Number 54538862: 2^1 + 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^12 + 2^13 + 2^22 + 2^24 + 2^25
Number 111949941: 2^0 + 2^2 + 2^4 + 2^5 + 2^6 + 2^11 + 2^12 + 2^13 + 2^18 + 2^19 + 2^21 + 2^23 + 2^25 + 2^26
Number 227634408: 2^3 + 2^5 + 2^6 + 2^7 + 2^10 + 2^11 + 2^13 + 2^14 + 2^16 + 2^20 + 2^23 + 2^24 + 2^26 + 2^27
Number 400708894: 2^1 + 2^2 + 2^3 + 2^4 + 2^8 + 2^10 + 2^12 + 2^14 + 2^17 + 2^21 + 2^22 + 2^23 + 2^24 + 2^25 + 2^26 + 2^28
Number 1033162084: 2^2 + 2^5 + 2^6 + 2^8 + 2^10 + 2^11 + 2^14 + 2^15 + 2^18 + 2^20 + 2^23 + 2^24 + 2^26 + 2^27 + 2^28 + 2^29
Number 2102388551: 2^0 + 2^1 + 2^2 + 2^6 + 2^8 + 2^9 + 2^10 + 2^13 + 2^14 + 2^15 + 2^16 + 2^17 + 2^18 + 2^19 + 2^22 + 2^24 + 2^26 + 2^27 + 2^28 + 2^29 + 2^30
Number 3093472814: 2^1 + 2^2 + 2^3 + 2^5 + 2^9 + 2^10 + 2^13 + 2^15 + 2^17 + 2^21 + 2^22 + 2^27 + 2^28 + 2^29 + 2^31
Number 7137437912: 2^3 + 2^4 + 2^6 + 2^7 + 2^11 + 2^13 + 2^15 + 2^18 + 2^19 + 2^21 + 2^22 + 2^24 + 2^27 + 2^29 + 2^31 + 2^32
Number 14133072157: 2^0 + 2^2 + 2^3 + 2^4 + 2^8 + 2^12 + 2^15 + 2^16 + 2^18 + 2^21 + 2^22 + 2^25 + 2^27 + 2^30 + 2^32 + 2^33
Number 20112871792: 2^4 + 2^5 + 2^6 + 2^8 + 2^12 + 2^17 + 2^20 + 2^22 + 2^23 + 2^25 + 2^26 + 2^27 + 2^29 + 2^31 + 2^34
Number 42387769980: 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^9 + 2^11 + 2^17 + 2^23 + 2^25 + 2^26 + 2^27 + 2^28 + 2^30 + 2^31 + 2^32 + 2^35
Number 100251560595: 2^0 + 2^1 + 2^4 + 2^7 + 2^9 + 2^11 + 2^13 + 2^14 + 2^16 + 2^18 + 2^20 + 2^21 + 2^22 + 2^24 + 2^25 + 2^26 + 2^28 + 2^30 + 2^32 + 2^33 + 2^34 + 2^36
Number 146971536592: 2^4 + 2^6 + 2^7 + 2^10 + 2^11 + 2^13 + 2^15 + 2^16 + 2^17 + 2^18 + 2^19 + 2^21 + 2^27 + 2^28 + 2^29 + 2^33 + 2^37
Number 323724968937: 2^0 + 2^3 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^16 + 2^17 + 2^23 + 2^24 + 2^25 + 2^26 + 2^27 + 2^28 + 2^30 + 2^32 + 2^33 + 2^35 + 2^38
Number 1003651412950: 2^1 + 2^2 + 2^4 + 2^6 + 2^7 + 2^8 + 2^9 + 2^12 + 2^13 + 2^16 + 2^19 + 2^22 + 2^25 + 2^26 + 2^27 + 2^29 + 2^31 + 2^32 + 2^35 + 2^37 + 2^38 + 2^39
Number 1458252205147: 2^0 + 2^1 + 2^3 + 2^4 + 2^6 + 2^10 + 2^11 + 2^14 + 2^15 + 2^17 + 2^19 + 2^20 + 2^23 + 2^25 + 2^26 + 2^31 + 2^32 + 2^33 + 2^36 + 2^38 + 2^40
Number 2895374552463: 2^0 + 2^1 + 2^2 + 2^3 + 2^7 + 2^8 + 2^10 + 2^11 + 2^15 + 2^16 + 2^18 + 2^22 + 2^23 + 2^24 + 2^29 + 2^33 + 2^37 + 2^39 + 2^41
Number 7409811047825: 2^0 + 2^4 + 2^7 + 2^8 + 2^10 + 2^14 + 2^15 + 2^16 + 2^17 + 2^18 + 2^21 + 2^24 + 2^25 + 2^27 + 2^28 + 2^29 + 2^32 + 2^34 + 2^35 + 2^36 + 2^37 + 2^39 + 2^41 + 2^42
Number 15404761757071: 2^0 + 2^1 + 2^2 + 2^3 + 2^7 + 2^8 + 2^10 + 2^12 + 2^13 + 2^17 + 2^19 + 2^20 + 2^22 + 2^24 + 2^25 + 2^28 + 2^29 + 2^31 + 2^33 + 2^41 + 2^42 + 2^43
Number 19996463086597: 2^0 + 2^2 + 2^10 + 2^11 + 2^12 + 2^13 + 2^18 + 2^20 + 2^25 + 2^27 + 2^30 + 2^31 + 2^32 + 2^33 + 2^34 + 2^35 + 2^37 + 2^41 + 2^44
Number 51408670348612: 2^2 + 2^6 + 2^8 + 2^10 + 2^12 + 2^14 + 2^15 + 2^19 + 2^23 + 2^24 + 2^25 + 2^31 + 2^32 + 2^38 + 2^39 + 2^41 + 2^42 + 2^43 + 2^45
Number 119666659114170: 2^1 + 2^3 + 2^4 + 2^5 + 2^7 + 2^10 + 2^11 + 2^12 + 2^13 + 2^16 + 2^18 + 2^20 + 2^21 + 2^23 + 2^28 + 2^33 + 2^34 + 2^36 + 2^38 + 2^39 + 2^42 + 2^43 + 2^45 + 2^46
Number 191206974700443: 2^0 + 2^1 + 2^3 + 2^4 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^17 + 2^18 + 2^19 + 2^22 + 2^23 + 2^24 + 2^25 + 2^26 + 2^28 + 2^30 + 2^31 + 2^33 + 2^34 + 2^37 + 2^38 + 2^39 + 2^40 + 2^42 + 2^43 + 2^45 + 2^47
Number 409118905032525: 2^0 + 2^2 + 2^3 + 2^6 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12 + 2^14 + 2^16 + 2^24 + 2^25 + 2^27 + 2^29 + 2^30 + 2^32 + 2^33 + 2^34 + 2^36 + 2^42 + 2^44 + 2^45 + 2^46 + 2^48
Number 611140496167764: 2^2 + 2^4 + 2^6 + 2^8 + 2^9 + 2^12 + 2^15 + 2^17 + 2^18 + 2^19 + 2^21 + 2^26 + 2^27 + 2^28 + 2^29 + 2^34 + 2^36 + 2^38 + 2^39 + 2^40 + 2^41 + 2^43 + 2^45 + 2^49
Number 2058769515153876: 2^2 + 2^4 + 2^6 + 2^7 + 2^8 + 2^11 + 2^21 + 2^23 + 2^24 + 2^29 + 2^31 + 2^36 + 2^37 + 2^38 + 2^44 + 2^46 + 2^48 + 2^49 + 2^50
Number 4216495639600700: 2^2 + 2^3 + 2^4 + 2^5 + 2^9 + 2^10 + 2^11 + 2^12 + 2^15 + 2^16 + 2^17 + 2^19 + 2^22 + 2^23 + 2^26 + 2^29 + 2^30 + 2^32 + 2^37 + 2^38 + 2^39 + 2^41 + 2^43 + 2^44 + 2^45 + 2^46 + 2^47 + 2^49 + 2^50 + 2^51
Number 6763683971478124: 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^12 + 2^13 + 2^17 + 2^18 + 2^19 + 2^20 + 2^21 + 2^22 + 2^26 + 2^29 + 2^30 + 2^31 + 2^35 + 2^39 + 2^40 + 2^41 + 2^42 + 2^51 + 2^52
Number 9974455244496707: 2^0 + 2^1 + 2^6 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12 + 2^16 + 2^18 + 2^19 + 2^21 + 2^23 + 2^24 + 2^26 + 2^28 + 2^30 + 2^31 + 2^33 + 2^34 + 2^36 + 2^37 + 2^39 + 2^40 + 2^41 + 2^42 + 2^43 + 2^45 + 2^46 + 2^48 + 2^49 + 2^53
Number 30045390491869460: 2^2 + 2^4 + 2^8 + 2^13 + 2^14 + 2^15 + 2^16 + 2^17 + 2^18 + 2^21 + 2^22 + 2^24 + 2^25 + 2^27 + 2^28 + 2^31 + 2^32 + 2^33 + 2^34 + 2^35 + 2^36 + 2^41 + 2^42 + 2^43 + 2^44 + 2^45 + 2^47 + 2^49 + 2^51 + 2^53 + 2^54
Number 44218742292676575: 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12 + 2^13 + 2^14 + 2^15 + 2^18 + 2^22 + 2^23 + 2^25 + 2^27 + 2^28 + 2^29 + 2^33 + 2^34 + 2^36 + 2^37 + 2^39 + 2^43 + 2^44 + 2^48 + 2^50 + 2^51 + 2^52 + 2^55
Number 138245758910846492: 2^2 + 2^3 + 2^4 + 2^9 + 2^10 + 2^12 + 2^14 + 2^15 + 2^16 + 2^18 + 2^20 + 2^23 + 2^24 + 2^25 + 2^26 + 2^32 + 2^35 + 2^38 + 2^39 + 2^40 + 2^42 + 2^45 + 2^48 + 2^49 + 2^51 + 2^53 + 2^54 + 2^55 + 2^56
Number 199976667976342049: 2^0 + 2^5 + 2^9 + 2^11 + 2^12 + 2^15 + 2^19 + 2^20 + 2^25 + 2^28 + 2^30 + 2^35 + 2^36 + 2^37 + 2^39 + 2^40 + 2^42 + 2^44 + 2^45 + 2^46 + 2^49 + 2^50 + 2^54 + 2^55 + 2^57
Number 525070384258266191: 2^0 + 2^1 + 2^2 + 2^3 + 2^6 + 2^10 + 2^12 + 2^13 + 2^15 + 2^17 + 2^19 + 2^22 + 2^23 + 2^24 + 2^25 + 2^26 + 2^31 + 2^32 + 2^33 + 2^35 + 2^36 + 2^37 + 2^39 + 2^42 + 2^43 + 2^45 + 2^46 + 2^48 + 2^51 + 2^54 + 2^56 + 2^57 + 2^58
Number 1135041350219496382: 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^14 + 2^17 + 2^18 + 2^20 + 2^21 + 2^24 + 2^26 + 2^29 + 2^35 + 2^36 + 2^41 + 2^43 + 2^44 + 2^45 + 2^46 + 2^54 + 2^55 + 2^56 + 2^57 + 2^58 + 2^59
Number 1425787542618654982: 2^1 + 2^2 + 2^8 + 2^11 + 2^14 + 2^17 + 2^18 + 2^20 + 2^21 + 2^22 + 2^23 + 2^25 + 2^30 + 2^32 + 2^33 + 2^34 + 2^36 + 2^37 + 2^41 + 2^43 + 2^45 + 2^46 + 2^48 + 2^51 + 2^54 + 2^55 + 2^56 + 2^57 + 2^60
Number 3908372542507822062: 2^1 + 2^2 + 2^3 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^13 + 2^15 + 2^16 + 2^20 + 2^25 + 2^26 + 2^28 + 2^29 + 2^31 + 2^33 + 2^34 + 2^35 + 2^36 + 2^42 + 2^44 + 2^46 + 2^48 + 2^50 + 2^51 + 2^52 + 2^53 + 2^57 + 2^58 + 2^60 + 2^61
Number 8993229949524469768: 2^3 + 2^11 + 2^13 + 2^14 + 2^16 + 2^17 + 2^18 + 2^19 + 2^22 + 2^23 + 2^26 + 2^27 + 2^29 + 2^31 + 2^32 + 2^34 + 2^35 + 2^36 + 2^37 + 2^38 + 2^39 + 2^41 + 2^42 + 2^43 + 2^44 + 2^46 + 2^49 + 2^50 + 2^51 + 2^54 + 2^55 + 2^58 + 2^59 + 2^60 + 2^61 + 2^62
Number 17799667357578236628: 2^2 + 2^4 + 2^6 + 2^7 + 2^9 + 2^12 + 2^16 + 2^20 + 2^23 + 2^28 + 2^29 + 2^31 + 2^32 + 2^33 + 2^34 + 2^37 + 2^40 + 2^41 + 2^42 + 2^43 + 2^44 + 2^48 + 2^50 + 2^56 + 2^57 + 2^58 + 2^60 + 2^61 + 2^62 + 2^63
Number 30568377312064202855: 2^0 + 2^1 + 2^2 + 2^5 + 2^6 + 2^11 + 2^13 + 2^14 + 2^17 + 2^20 + 2^21 + 2^23 + 2^24 + 2^26 + 2^32 + 2^34 + 2^36 + 2^37 + 2^40 + 2^44 + 2^45 + 2^47 + 2^51 + 2^52 + 2^53 + 2^59 + 2^61 + 2^63 + 2^64

I wrote a small script to try this but if someone can make multy gpu Windows/Linux program with that approach to try it

import bitcoin
import ecdsa
import base58
import random
import logging

# Function to convert private key to Wallet Import Format (WIF)
def private_key_to_wif(private_key):
    wif = bitcoin.encode_privkey(bitcoin.decode_privkey(private_key, 'hex'), 'wif')
    return wif

# Function to convert private key to Bitcoin address (P2PKH)
def private_key_to_address(private_key):
    sk = ecdsa.SigningKey.from_string(bytes.fromhex(private_key), curve=ecdsa.SECP256k1)
    vk = sk.get_verifying_key()
    compressed_vk = vk.to_string('compressed').hex()
    address = bitcoin.pubkey_to_address(compressed_vk)
    return address

# Function to calculate Hash 160 of a Bitcoin address
def address_to_hash160(address):
    decoded_address = base58.b58decode_check(address)
    return decoded_address[1:].hex()

# Function to generate a Bitcoin private key and check if the corresponding address matches the target address
def generate_private_key(target_hash160):
    while True:
        try:
            num_objects = random.randint(27,35)
            random_values = random.sample(range(0, 65), num_objects)
            random_values.append(65)
            private_key_num = sum([2 ** power for power in random_values])
            private_key = format(private_key_num, '064x')
            bitcoin_address = private_key_to_address(private_key)
            hash160 = address_to_hash160(bitcoin_address)

            print("Private Key:", private_key)

            if hash160 == target_hash160:
                with open('private_key.txt', 'w') as file:
                    file.write(private_key)
                logging.info("Private key saved to 'private_key.txt' file.")
                break
        except Exception as e:
            logging.error(f"Error: {str(e)}")

def main():
    target_hash160 = '20d45a6a762535700ce9e0b216e31994335db8a5'
    logging.basicConfig(filename='bitcoin_keygen.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
    logging.info("Generating private keys...")
    generate_private_key(target_hash160)

if __name__ == "__main__":
    main()
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 11/08/2023, 07:07:00 UTC
I have an idea. Maybe is a stupid one but it`s I think simple. Can we all just make GPU pool to work all thogether to crack puzzle #66 to #69? I'm using VBCr2 on windows 11 with 2x GTX 1060 6GB and 1x GTX1080ti (old pc).
Next week I will buy another used GTX 1080ti and I will add it to my pc. Currently I am seaching with 800mil. keys per sec and with the fourth gpu I will have arround 1200-1250mil. keys per second. I made some raw calculation about how much time it will take me at best to find the private key for the #66 puzzle with 800mil. keys per sec - at best 5 mounts! If we can shorten that time it will be good.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
kachev87
on 23/05/2023, 02:39:09 UTC
So cool predictor! Can you guys predict the closest range to puzzle 125 please? Just for educational purposes (taking the coins I mean), I'm a bit (alot) noob when it comes to technicalities.😉
Ask zahid888 to stretch the results up to p125 and to share it.
Post
Topic
Board Bitcoin Discussion
Re: #66
by
kachev87
on 22/05/2023, 22:35:52 UTC
I wrote a small python script to try to predict the next number of the #66 address

from sklearn.linear_model import LinearRegression

# Training numbers
train_sequence = [1,3,7,8,21,49,76,224,467,514,1155,2683,5216,10544,26867,51510,95823,198669,357535,863317,1811764,3007503,5598802,14428676,33185509,54538862,111949941,227634408,400708894,1033162084,2102388551,3093472814,7137437912,14133072157,20112871792,42387769980,100251560595,146971536592,323724968937,1003651412950,1458252205147,2895374552463,7409811047825,15404761757071,19996463086597,51408670348612,119666659114170,191206974700443,409118905032525,611140496167764,2058769515153876,4216495639600700,6763683971478124,9974455244496707,30045390491869460,44218742292676575,138245758910846492,199976667976342049,525070384258266191,1135041350219496382,1425787542618654982,3908372542507822062,8993229949524469768,17799667357578236628,30568377312064202855]

# Forming the training data and target values
X_train = [[2**i] for i in range(len(train_sequence))]  # Powers of 2
y_train = train_sequence

# Creating and training the model
model = LinearRegression()
model.fit(X_train, y_train)

# Predicting the next number
next_number = model.predict([[2**len(train_sequence)]])
next_number_decimal = int(next_number)  # Converting the predicted number to decimal
next_number_hex = hex(next_number_decimal)  # Converting the predicted number from decimal to hexadecimal

print("The next number in the sequence (hexadecimal) is:", next_number_hex)
print("The next number in the sequence (decimal) is:", next_number_decimal)


If helpfull 1N97k1LdzjwdG6riN9ksJBhgDQyajV14GU

The next number in the sequence (hexadecimal) is: 0x370ce49e46646a000 P66
The next number in the sequence (decimal) is: 63468747843896254464
The next number in the sequence (hexadecimal) is: 0x6e15318735d5b8000 P67
The next number in the sequence (decimal) is: 126916812407624663040
The next number in the sequence (hexadecimal) is: 0xdc25cb5914b880000 P68
The next number in the sequence (decimal) is: 253812941535081660416
The next number in the sequence (hexadecimal) is: 0x1b846fefcd27e20000 P69
The next number in the sequence (decimal) is: 507605199789995720704
The next number in the sequence (hexadecimal) is: 0x3708966444e0900000 P70 : 349b84b6431a6c4ef1
The next number in the sequence (decimal) is: 1015189716299823448064
https://media.tenor.com/UiUFIuFzuH0AAAAd/memes-wrong-number.gif

The goal mate is not give you the exact number, but to get a number that is fairly close to searched number so you can small search in smaller range. As you can se in line #70 the number that predicted is not far away from the actual one.
Post
Topic
Board Bitcoin Discussion
#66
by
kachev87
on 21/05/2023, 12:48:46 UTC
I wrote a small python script to try to predict the next number of the #66 address

from sklearn.linear_model import LinearRegression

# Training numbers
train_sequence = [1,3,7,8,21,49,76,224,467,514,1155,2683,5216,10544,26867,51510,95823,198669,357535,863317,1811764,3007503,5598802,14428676,33185509,54538862,111949941,227634408,400708894,1033162084,2102388551,3093472814,7137437912,14133072157,20112871792,42387769980,100251560595,146971536592,323724968937,1003651412950,1458252205147,2895374552463,7409811047825,15404761757071,19996463086597,51408670348612,119666659114170,191206974700443,409118905032525,611140496167764,2058769515153876,4216495639600700,6763683971478124,9974455244496707,30045390491869460,44218742292676575,138245758910846492,199976667976342049,525070384258266191,1135041350219496382,1425787542618654982,3908372542507822062,8993229949524469768,17799667357578236628,30568377312064202855]

# Forming the training data and target values
X_train = [[2**i] for i in range(len(train_sequence))]  # Powers of 2
y_train = train_sequence

# Creating and training the model
model = LinearRegression()
model.fit(X_train, y_train)

# Predicting the next number
next_number = model.predict([[2**len(train_sequence)]])
next_number_decimal = int(next_number)  # Converting the predicted number to decimal
next_number_hex = hex(next_number_decimal)  # Converting the predicted number from decimal to hexadecimal

print("The next number in the sequence (hexadecimal) is:", next_number_hex)
print("The next number in the sequence (decimal) is:", next_number_decimal)


If helpfull 1N97k1LdzjwdG6riN9ksJBhgDQyajV14GU
Post
Topic
Board Games and rounds
Ok, here's a 1BTC puzzle.
by
kachev87
on 12/04/2019, 09:36:56 UTC
I read the Duality.pdf  and I saw the part with the ''educated guess'', tried different combinations, but again no luck.
From the last 3-4 posts I think that the hint given by the Puzzler a ""solution" is not an actual answer to the question "WhyTheCombOfNatashaOtomoskiHas21Teeth?.txt".
We are all seeking for the "solution", but first what is the "answer"?
I`m thinking that the "solution" 8 camel cased words are something like an anagram to the "answer".
But I personally don`t have any ideas what the answer can be or the connection to right 8 camel cased words that are the solution. Sad

Post
Topic
Re: Ok, here's a 1BTC puzzle.
by
kachev87
on 11/03/2019, 23:16:11 UTC
I've tested thousands of possibilities, I've given up on this challenge

Has anyone been able to verify the signature? G/cbms/K/DNzcRin5v2B03iXdbpdVoZbTebt7KG95j3FUqnJvcP9rDYcGpSV27RLspR7SlPjqma4h0tDAMwovIo=
I could not, it always gives invalid signature

I'm pretty sure it's troll.

Rooting for you guys, I hope its for real and someone here solves it. Smiley

Annoyingly, I've hit a dead end.
I'll give it a while longer, then post my thoughts here in case they're of use to anyone else.

How to verify this signiture? How to do this?
Post
Topic
Re: Ok, here's a 1BTC puzzle.
by
kachev87
on 23/02/2019, 13:07:52 UTC
Hello, I just registered here.
I`m trying to solve this puzzle from a week now and I tried
everything that came to my mind.
Tried to search for answen for:
Why Satoshi Nakamoto made bitcoin amount to be 21 million - no eight english words answer
Why combs have 21 teeth - no eight english words answer
What is the meaning of the number 21 - it is the sum of all first 6 natural numbers - matematics, Fibonacci,
spritual, what so ever involves the number 21, 21 century stuff, I tried and tried.... and no luck...

I don`t think that even Satoshi Nakamoto(or Natasha Otomoski) can answer that question.

I wish you people luck to crack that puzzle! Smiley