Search content
Sort by

Showing 14 of 14 results by lotuseuy
Post
Topic
Board Mining (Altcoins)
Re:
by
lotuseuy
on 01/12/2021, 15:23:54 UTC
The new beta version is ready. It is mostly a bugfix release, the more significant upgrades are coming next month. You can download PhoenixMiner 6.0a from here:

PhoenixMiner_6.0a_Windows.zip
PhoenixMiner_6.0a_Linux.tar.gz

The new features in this release are:
  • Full LHR disable mode -lhrdis <n>  1 - yes (default), 0 - no
  • Show the GPU vendor name in the list of GPUs to make it easier to identify the GPUs
  • Added support for the latest AMD Linux drivers 21.40.1. There are some bugs in these drivers, particularly the clocks and voltages can't be set properly with older
    cards (RX4x0/RX5x0/Vega/RadeonVII)
  • Validated support for the latest AMD Windows drivers up to 21.11.2
  • Fixed issues with AMD RX6700XT cards with the latest AMD and Linux drivers
  • Fixed issues with AMD Vega and Radeon VII cards on latest Windows and Linux drivers
  • Fixed crash with very old Nvidia drivers (3xx.x)
  • Other fixes and small improvements

The updated list of known issues (driver incompatibilities, etc.) and workarounds:
AMD Linux driver 21.40.1 has a bug preventing proper setting of clocks and voltages on older cards (RX4x0/RX5x0/Vega/RadeonVII). Given that these drivers are also
usually slower than the older drivers for these cards, we recommend using Linux drivers 20.30 for anything older than RX6000 series.
If you are using Linux drivers 21.40.1 with Radeon VII cards, you need to add the option -fpwm 1 in order to have proper fan control.
AMD Linux drivers 21.40.1 has finally removed the requirement of PCIe atomics but there are problems when you try to mix Polaris (RX4x0/5x0) cards and Vega or newer
cards on the same rig.
Some Nvidia cards will report a lot of stale shares under Windows 11. Using the same driver version under Windows 10 resolves the issue.
Post
Topic
Board Games and rounds
Re: 🔮 Futuur - World’s Leading Play-Money Prediction Market - Now with Bitcoin! 🔮
by
lotuseuy
on 08/11/2020, 09:05:32 UTC
hello... my username is loetuw, thank you!!!
Post
Topic
Board Announcements (Altcoins)
Re: [ANN][ICO] 🌎 FutureCoin Light - Decentralized financial payment
by
lotuseuy
on 22/02/2018, 21:37:30 UTC
So much all the good is written. Just do not understand how this is implemented. When will we see your smart contract?
yep, want to see this. whitepaper have this information?
Post
Topic
Board Games and rounds
Re: TWITTER giveaway!!! Easy and wait !!
by
lotuseuy
on 18/02/2018, 03:01:37 UTC
in
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 20/04/2015, 05:32:10 UTC
referenced by article at http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
i have created python code :
Quote
import hashlib
import txnUtils
import keyUtils

tx = "01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0008b48304502204117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9 0221008a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b014104ef0 9f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985aefb9 19e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0ffffffff01a7730100000000001976a91 498dccb66b17e1efb1f0d2bba0446502f2625444488ac00000000"

m = txnUtils.parseTxn(tx)
e = txnUtils.getSignableTxn(m)
z = hashlib.sha256(hashlib.sha256(e.decode('hex')).digest()).digest()
z1 = z[::-1].encode('hex_codec')
z = z.encode('hex_codec')
s = keyUtils.derSigToHexSig(m[1][:-2])
pub =  m[2]

print 'Signed TX is :', tx
print 'Signature (r, s pair) is :', s
print 'Public Key is :', pub
print ""
print "##################"
print ""
print 'Unsigned TX is :', e
print 'hash of message (z value) is :', z
print 'reversed z :', z1

resulting
Quote
Signed TX is : 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0008b48304502204117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9 0221008a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b014104ef0 9f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985aefb9 19e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0ffffffff01a7730100000000001976a91 498dccb66b17e1efb1f0d2bba0446502f2625444488ac00000000

Signature (r, s pair) is : 4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae98a032016f639b73 0779945f7b5bedb3701a0645c1752c1b27fccc617019f172b
Public Key is : 04ef09f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985 aefb919e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0

##################

Unsigned TX is : 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0001976a914d93d248443eb1d3745891a76c0fa8a8bc86d4a3d88acffffffff01a7730100000000 001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488ac0000000001000000

hash of message (z value) is : 1f68f7c9181dcff4c604486ae2baec7860ccf8139124745458db1c613ec38250

reversed z : 5082c33e611cdb585474249113f8cc6078ecbae26a4804c6f4cf1d18c9f7681f
are this valid result for my tx?
if yes, what is must i use to validate signature? the reversed z or not?

SOLVED!!!!!!!! SOLVED!!!!!!!! SOLVED!!!!!!!! SOLVED!!!!!!!! SOLVED!!!!!!!! SOLVED!!!!!!!!
Thanks for Helping!!!
result using sagemath
Quote
# r, s pair from signed transaction
# original z
z1 = 0x1f68f7c9181dcff4c604486ae2baec7860ccf8139124745458db1c613ec38250
# reversed z
z2 = 0x5082c33e611cdb585474249113f8cc6078ecbae26a4804c6f4cf1d18c9f7681f
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
s = 0x8a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b

# signature verification

u = mod(s^-1, n)
v1 = mod((z1 * u), n)
v2 = mod((z2 * u), n)
w = mod((r * u), n)

v1 = int(v1)
v2 = int(v2)
w = int(w)

C1 = v1*G + w*Qa
C2 = v2*G + w*Qa

print 'original z', C1.xy
print 'reversed z', C2.xy
print 'r value from tx', r

result
Quote
original z 4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
reversed z e60c42c8b407e7b924ceb8ea6af9602b7f62bd7894dd9694d5fede992f4d42f4
r value from tx 4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
so the right z value is unreversed order..... Kiss Grin Cheesy
Post
Topic
Board Development & Technical Discussion
Merits 2 from 1 user
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 20/04/2015, 05:14:13 UTC
⭐ Merited by ETFbitcoin (2)
referenced by article at http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
i have created python code :
Quote
import hashlib
import txnUtils
import keyUtils

tx = "01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0008b48304502204117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9 0221008a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b014104ef0 9f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985aefb9 19e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0ffffffff01a7730100000000001976a91 498dccb66b17e1efb1f0d2bba0446502f2625444488ac00000000"

m = txnUtils.parseTxn(tx)
e = txnUtils.getSignableTxn(m)
z = hashlib.sha256(hashlib.sha256(e.decode('hex')).digest()).digest()
z1 = z[::-1].encode('hex_codec')
z = z.encode('hex_codec')
s = keyUtils.derSigToHexSig(m[1][:-2])
pub =  m[2]

print 'Signed TX is :', tx
print 'Signature (r, s pair) is :', s
print 'Public Key is :', pub
print ""
print "##################"
print ""
print 'Unsigned TX is :', e
print 'hash of message (z value) is :', z
print 'reversed z :', z1

resulting
Quote
Signed TX is : 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0008b48304502204117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9 0221008a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b014104ef0 9f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985aefb9 19e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0ffffffff01a7730100000000001976a91 498dccb66b17e1efb1f0d2bba0446502f2625444488ac00000000

Signature (r, s pair) is : 4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae98a032016f639b73 0779945f7b5bedb3701a0645c1752c1b27fccc617019f172b
Public Key is : 04ef09f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985 aefb919e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0

##################

Unsigned TX is : 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0001976a914d93d248443eb1d3745891a76c0fa8a8bc86d4a3d88acffffffff01a7730100000000 001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488ac0000000001000000

hash of message (z value) is : 1f68f7c9181dcff4c604486ae2baec7860ccf8139124745458db1c613ec38250

reversed z : 5082c33e611cdb585474249113f8cc6078ecbae26a4804c6f4cf1d18c9f7681f
are this valid result for my tx?
if yes, what is must i use to validate signature? the reversed z or not?
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 20/04/2015, 02:30:48 UTC
You're running the hashes, both outer and inner on strings of hex. Thats wrong.

You haven't included enough of your sage output to see if you got the ECC parts right, ... you shouldn't need any mods at all if you're using the right object types, see the notebook on bitcoin.ninja.

i try method from bitcoin.ninja too but it still invalid
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 20/04/2015, 02:18:16 UTC
i have used this code for hashing unsigned tx above :
Quote
import hashlib
e = m.decode('hex')
z = hashlib.sha256(hashlib.sha256(e).digest()).digest()
z = z.encode('hex_codec')
print z
and resulting :
Quote
19cc06bd75255f3594abeca69af20b505c7f2737dea64e4d2e36ba69f06ed092
so the r, s, and z pair from signed tx is :
Quote
z = 0x19cc06bd75255f3594abeca69af20b505c7f2737dea64e4d2e36ba69f06ed092
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
s = 0x8a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b
and still resulting that the signature is invalid  Huh
this is the resul :
Quote
C.xy = 0x760a4453d69c21c2c17131867f3862a802036818cbc6abaec5091cafa30b9825
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
i confused about this......

i think... i have missed that hashing result must be reversed! are it?
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 20/04/2015, 02:04:12 UTC
i have used this code for hashing unsigned tx above :
Quote
import hashlib
e = m.decode('hex')
z = hashlib.sha256(hashlib.sha256(e).digest()).digest()
z = z.encode('hex_codec')
print z
and resulting :
Quote
19cc06bd75255f3594abeca69af20b505c7f2737dea64e4d2e36ba69f06ed092
so the r, s, and z pair from signed tx is :
Quote
z = 0x19cc06bd75255f3594abeca69af20b505c7f2737dea64e4d2e36ba69f06ed092
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
s = 0x8a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b
and still resulting that the signature is invalid  Huh
this is the resul :
Quote
C.xy = 0x760a4453d69c21c2c17131867f3862a802036818cbc6abaec5091cafa30b9825
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
i confused about this......
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 18/04/2015, 09:58:39 UTC
You're running the hashes, both outer and inner on strings of hex. Thats wrong.

You haven't included enough of your sage output to see if you got the ECC parts right, ... you shouldn't need any mods at all if you're using the right object types, see the notebook on bitcoin.ninja.
can i use script from this https://en.bitcoin.it/wiki/Block_hashing_algorithm
Post
Topic
Board Development & Technical Discussion
Re: VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 18/04/2015, 01:40:52 UTC
You're running the hashes, both outer and inner on strings of hex. Thats wrong.

You haven't included enough of your sage output to see if you got the ECC parts right, ... you shouldn't need any mods at all if you're using the right object types, see the notebook on bitcoin.ninja.

please show me the right scripts to hashing the unsigned tx...!
i'm beginner about this.... Smiley
Post
Topic
Board Development & Technical Discussion
VERIFYING RAW BITCOIN TX USING SAGEMATH (pure ecdsa in math)
by
lotuseuy
on 17/04/2015, 04:18:07 UTC
i have no idea where to ask about this...so i start new topic here!
first i have created this tx using brainwallet...from 1LoestmTyf96fLFf9Rfb4CZUGMsXtZGsok to 1EwGDERoz4W8Cyf3murUjcFq9kQhDsEWCM valued 0.00095143 BTC with 0.000001 BTC fee.

then i want to understand about how this tx is verified in math....
as described at wikipedia to verify a ecdsa signature by this step :
1. Verify that r and s are integers in [1, n-1]. If not, the signature is invalid.
2. Calculate e = HASH(m), where HASH is the same function used in the signature generation.
3. Let z be the Ln leftmost bits of e.
4. Calculate w = s-1 mod n.
5. Calculate u1 = z*w mod n and u2 = r*w mod n.
6. Calculate the curve point (x1, y1) = u1 * G + u2 * Qa.
6. The signature is valid if r == x1 mod n, invalid otherwise.

my raw tx is 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0008b48304502204117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9 0221008a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b014104ef0 9f65a570580ae9e33bea461b5d27bef90e521020f924c599a0d918f84c2781eb29f21d8985aefb9 19e1feccde73bea07edea0cd04b15e7c88a19e80df2dd0ffffffff01a7730100000000001976a91 498dccb66b17e1efb1f0d2bba0446502f2625444488ac00000000

as described at this article i begin calculate the message(m) of my tx so my unsigned tx is 01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488acffffffff01a7730100000000 001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488ac0000000001000000

then i calculate the hash of my message as described at bitcoin wiki it must be double hashed..i use python to do this
Quote
# Double Hash Function used by Bitcoin
import hashlib
m = "01000000011575f1aacac4f66f9cfecd6ea1ef272e8cb5ce33f5ae97d1fcf02cec774a82e007000 0001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488acffffffff01a7730100000000 001976a91498dccb66b17e1efb1f0d2bba0446502f2625444488ac0000000001000000"
d = hashlib.sha256()
d2 = hashlib.sha256()
d.update(m)
d.hexdigest()
d2.update(d.digest())
e = d2.hexdigest()
print e
and resulting this hash
Quote
4ebb9eb31e4a87591b66491308520e92679729d21e6e3197969a8dc463645fe7
now i begin calculate it using sagemath
Quote
# r, s pair from signed transaction
z = 0x4ebb9eb31e4a87591b66491308520e92679729d21e6e3197969a8dc463645fe7
r = 0x4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9
s = 0x8a032016f639b730779945f7b5bedb3701a0645c1752c1b27fccc617019f172b

# signature verification

w = mod(s^-1, n)
u1 = mod((z * u), n)
u2 = mod((r * u), n)

# calculate
C = u1*G + u2*Qa

print r
print C.x

and resulting...
Quote
r = 134a083ace7ff01daa33b41000a1774755a8acaf58524caece273d97ea52323d
C.x = 4117f9f3173b915d03be6170d7af520bfa78d9d9fd35c829d974d3aaead09ae9

it's all not same otherwise the signature is not valid?!!!
or may be i lose something so my calculation being wrong?!!

thanks for helps.... Smiley Smiley Smiley
Post
Topic
Board Service Discussion (Altcoins)
Re: [Vote][PRE-ANN] The Altcoins Foundation Platform POH | Vote for your Coin
by
lotuseuy
on 27/03/2015, 01:57:31 UTC
Please add HTML 5
Post
Topic
Board Service Discussion (Altcoins)
Re: [Vote][PRE-ANN] The Altcoins Foundation Platform POH | Vote for your Coin
by
lotuseuy
on 26/03/2015, 23:30:13 UTC
[HTML5]