Search content
Sort by

Showing 7 of 7 results by maa@slm
Post
Topic
Board Project Development
Re: [Complete!] Bitcoin block data (550 GB): inputs, outputs and transactions
by
maa@slm
on 11/01/2022, 06:26:55 UTC
i need blockdata.loyce.club/transactions/ (44 GB) link
Sorry, as I wrote earlier, I currently don't have hosting for it.

Thank you for your reply

please inform me after solving hosting
Post
Topic
Board Project Development
Re: [Complete!] Bitcoin block data (550 GB): inputs, outputs and transactions
by
maa@slm
on 10/01/2022, 15:03:56 UTC
please can you update Transaction link
any new link please send
I'm not sure what you mean by "transaction link". If you're looking for the current location of this data, it's on my external USB drive. Unfortunately:
It looks like Chia mining killed cheap storage VPS servers.

sir
i need blockdata.loyce.club/transactions/ (44 GB) link

Thank you
Post
Topic
Board Project Development
Re: [Complete!] Bitcoin block data (550 GB): inputs, outputs and transactions
by
maa@slm
on 10/01/2022, 08:04:53 UTC
This data is unavailable until I find an affordable VPS with enough disk space and cheap bandwidth.

Background
I've used Blockchair Database Dumps for several projects, but when I need it I don't want to wait weeks months to download all files. So I created a mirror for Bitcoin data Smiley

The data
See blockdata.loyce.club
blockdata.loyce.club/inputs/ (386 GB)
blockdata.loyce.club/outputs/ (121 GB)
blockdata.loyce.club/transactions/ (44 GB)

Updates
New files are added daily.

Be kind
Please only download with one thread at a time. I don't want to be kicked off another server.

Credits
Blockchair Database Dumps has a staggering amount of data, easily accessible (at 10 100 kB/s) with daily updates. All data in this topic comes from Blockchair.

No spam please.
Self-moderated against spam. Discussion and questions are welcome.



Related topics
Bitcoin block data available in CSV format
List of all Bitcoin addresses with a balance
List of all Bitcoin addresses ever used
[~500 GB] Bitcoin block data: inputs, outputs and transactions

Hello Sir,
please can you update Transaction link
any new link please send

Thank you in advance

maa
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle (3,350.00 BTC's )
by
maa@slm
on 17/04/2021, 13:49:25 UTC
Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private

I am newbie
how to run code with sage and python
can you provide sage and python code

off topic post below

r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
                s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
                e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
                r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
                s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
                e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
              s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
              s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
            s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
            s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
            s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
            s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
    s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
 (s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
                dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271


thanks in advance...


Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private

I am newbie
how to run code with sage and python
can you provide sage and python code

off topic post below

r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
                s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
                e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
                r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
                s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
                e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
              s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
              s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
            s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
            s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
            s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
            s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
    s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
 (s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
                dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271


thanks in advance...


This works with standard signature. Mine are forged signatures or you can call them blind signatures. The calculation is much more complicated! I believe it is totally solvable ... If you can get some method that can merge the calculation of a standard signature vs forged signature it would be good.

I was using the other thread  to do some calculations. Remembering that the forged signatures that I recreate do not need to sign data or prove anything ... it just needs to be forged and that they have the values r, s and h that satisfy the calculation to find a private key. I know it's confusing. I will show some calculations related to my other thread .
PRIVADE KEY = 74071287274168731384314914382498140270634658281328726941106265589917762050271

p  = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84635513758865831094131084311208775267495704821994249663954751780286420288259
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s1 = 49589235156255394867995584868850296899036724345858375131186053009052960413985
z2 = 0
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2 = 38207519993275076423632821614369697864201677311262964726666122651535684123121
x  = GF(p)

x    (1+s1*z1-s2*z2)/(s2*r2-s1*r1)

x = 74071287274168731384314914382498140270634658281328726941106265589917762050271

This one has the same parameters as the 3,350 BTC puzzle same private key and the nonce of the second signature (k1 / 2 = k2) the second nonce k is half the nonce of the first signature.The difference is that here I know the k

p  = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84161583072841456669059952378962616999584763854943151345373830328904632908285
r1 = 94314914130653988673888770692000596437449719230712969855406611816122161753818      
s1 = 22494341240730831470571507988479127051360132620614139425560703058275568234720
z2 = 84635513758865831094131084311208775267495704821994249663954751780286420288259
r2 = 99935505760319748698811422354322418311203851828465328908708024011195996180829
s2 = 49589235156255394867995584868850296899036724345858375131186053009052960413985
x = GF(p)

x  (43622407236688973229510697286560312319272310986763330555167501359776293201463+s1*z1-s2*z2)/(s2*r2-s1*r1)

x = 74071287274168731384314914382498140270634658281328726941106265589917762050271

I inverted the order and replaced s1 with its own inverse  modular and did the same with s2. Then replace 1+ with k +. It is already a way to try to find some method that solves it.

Look at this one ... it's getting fun!

p  = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 0
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829      
s1 = 107074468996081319021460734830045966618222458319611877930291706090648733800102
z2 = 0
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296      
s2 = 38207519993275076423632821614369697864201677311262964726666122651535684123121
x = GF(p)

x   (1+s1*z1-s2*z2)/(s2*r2-s1*r1)

x = 74071287274168731384314914382498140270634658281328726941106265589917762050271

Now this last one ...

p  = 115792089237316195423570985008687907852837564279074904382605163141518161494337
z1 = 84635513758865831094131084311208775267495704821994249663954751780286420288258
r1 = 99935505760319748698811422354322418311203851828465328908708024011195996180829      
s1 = 60641406722465826032271764495324651446430317390841265423474818277065347735949
z2 = 27086795414784162292297506376302057554366609881154614249233399373002336547922
r2 = 115035229747891778996889965749694763606205313739267493174821202115705061416296
s2 = 5926985887680998340381673345353182670979487968029788012609647734652828070871
x = GF(p)

x   (1+s1*z1-s2*z2)/(s2*r2-s1*r1)

x = 74071287274168731384314914382498140270634658281328726941106265589917762050271


Blind and forged signatures are not useless! it is possible to calculate them with real signatures.
I am trying to improve these methods. I still have a lot of work to do


Good Try
I don't know coding , can Help me ...
why can't send private messages for other users???
I too give some article clues...
Thanks

Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle (3,350.00 BTC's )
by
maa@slm
on 06/04/2021, 17:10:34 UTC
Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private

I am newbie
how to run code with sage and python
can you provide sage and python code

off topic post below

r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
                s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
                e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
                r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
                s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
                e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
              s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
              s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
            s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
            s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
            s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
            s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
    s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
 (s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
                dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271


thanks in advance...


I tried to solve the first and the second signature respectively
dU = (1 - s2-1e2 + s1-1e1) * (s2-1r2 - s1-1r1)-1 (mod n)

Any one can help me please.....
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle (3,350.00 BTC's )
by
maa@slm
on 02/04/2021, 09:51:33 UTC
Hello! @NotATether Great to have you here in this thread... you are very welcome. I have some interesting news from the other thread. And I also have a method that almost solved this one. And more other interesting things. I will send the link of this tool that you asked for.
The other day we will talk in private

I am newbie
how to run code with sage and python
can you provide sage and python code

off topic post below

r1: 99935505760319748698811422354322418311203851828465328908708024011195996180829
                s1: 14810718830809274529170993651437030466460552688297005873719201854608653306524
                e1: 84635513758865831094131084311208775267495704821994249663954751780286420288259
                r2: 115035229747891778996889965749694763606205313739267493174821202115705061416296
                s2: 56412229366601912356674994073152925730313351483910294670205660420888695151902
                e2: 711922952377524543467576566144169816136170490747613227449590530659320692002
              s1-1: 49589235156255394867995584868850296899036724345858375131186053009052960413985
              s2-1: 75860710922369590624024015031955497020040967297713867268831531011990818769063
            s2-1e2: 24319896032458654235859288439366790171987421552616806414321622974227628294346
            s1-1e1: 33373073398809441106621025265904429856170478887328914010434069704980389675914
            s2-1r2: 102756882304321902845902604711749179835279156262963247575454606290129811589248
            s1-1r1: 109263722787838616791900575947640359553086907200677310074463510255775504782173
1 - s2-1e2 + s1-1e1: 9053177366350786870761736826537639684183057334712107596112446730752761381569
    s2-1r2 - s1-1r1: 109285248753799481477573013772796728135029813341360841883596259175872468301412
 (s2-1r2 - s1-1r1)-1: 88597492899895469960154264896435952736065060080234931949365434864574123803941
                dU: 74071287274168731384314914382498140270634658281328726941106265589917762050271


thanks in advance...
Post
Topic
Board Development & Technical Discussion
Re: Half of any bitcoin (crypto) public key - (public key half)
by
maa@slm
on 02/03/2020, 07:12:44 UTC
Hi,
How to Calculate x ,y in Addresses,can you explain more.. if any code in git-hub
can you explain step by  guide please..
I am New to bitcoin ....
please inbox me to learn something...