I would like to share some statistics I've made,
the conclusion:
It is not possible that the "yellow/red", "green/blue" bits (only) encode a private key(or at least very unlikely)
(EDIT: see bottom comment)
looking at the distribution of 1's in the "yellow/red", "green/blue" bit streams it looks like the stream is random
yellow/red 00010101001011011100101100000000101110111000111100001010111000011100010111111101011100111101001100101001101100110001111000110000101110101100011101110010
green/blue 10001101001010111100001110110111110110010000101101000000110011011100011000101010011110010000001110100100010111111111011000011111101001011011010010101000
we have 78 - 1's in "yellow/red" stream and 77 -1's in "green/blue" stream (nearly 50% of all 152x2 bits)
but if we take only bits if a flame is long:
short/long 01101101101000101101101100111101111101101101111100101000111000101101111101111101111100111001101101101101101000101101111100101000111100101100111001101100
yellow/red 00 01 10 1 0 11 01 11 0000 01011 01 10 01111 0 1 111 0 11 00101 11111 10111 111 10 11 01 10 11 1 1 00 11110 1 0 1011 1 11 011 11 00
green/blue 00 11 10 1 1 11 00 11 1101 11101 00 00 01011 0 0 110 0 11 00110 01010 00111 010 00 11 01 01 00 0 1 11 10110 0 1 1010 0 10 010 01 10
we get:
P(yellow/red = 1 | long) =
0,6559139785 P(green/blue = 1 | long) = 0,5161290323
this is very strange (assuming the streams are random) but still possible, so let just check every second bit and cut out only bits according to 011011 pattern:
pattern 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
yellow/red 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0
green/blue 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1
P(yellow/red = 1 | '0 1 1' = 1) =
0,68 P(green/blue = 1 | '0 1 1' = 1) = 0,52
this is very unlikely to happen for a private key, how unlikely?
I've tested 1000 WIF private keys generated with vanitygen in base64, base58 and binary coding, the highest P(private key = 1| '0 1 1' = 1) was ~0.62
Here are my statistics:
1. average P for a private key generated with vanitygen (1000 samples)
vanity key bin base64 base58 ascii 7bit ascii 8bit
avr 0,4910042715 0,4928240574 0,4593443252 0,538281408 0,470996232
2. P for short/long, yellow/red, green/blue and
slim/fat bit streams with cutouts (columns)
https://imgur.com/gallery/JRZFs all '10101010 '01010101 1 1 0 1 1 0 0 1 0 0 short/long 1 short/long 0 yellow/red 1 yellow/red 0 green/blue 0 green/blue 1 slim/fat 1 slim/fat 0
short/long 0,6118421053 0,6578947368 0,5657894737 1 0 1 0 0,7820512821 0,4324324324 0,6233766234 0,6 0,7333333333 0,4935064935
yellow/red 0,5131578947 0,5263157895 0,5 0,68 0,2307692308 0,6559139785 0,2881355932 1 0 0,5584415584 0,4666666667 0,56 0,4675324675
green/blue 0,5065789474 0,5263157895 0,4868421053 0,52 0,5384615385 0,5161290323 0,4915254237 0,5512820513 0,4594594595 1 0 0,6266666667 0,3896103896
slim/fat 0,4934210526 0,4210526316 0,5657894737 0,52 0,2307692308 0,5913978495 0,3389830508 0,5384615385 0,4459459459 0,6103896104 0,3733333333 1 0
Bit count 152 76 76 50 26 93 59 74 78 77 75 75 77
in case of 2. we can clearly see there is a correlation between "short/long" - "yellow/red" streams and "green/blue" - "slim/fat" streams
EDIT:
In this analysis
I assumed that the
private key is random, but that is
not necessarily true,
in fact we only need
42bits of
"randomnes" to generate a public key with a "1FLAMEN6" prefix,
so after all
my main conclusion is probably
wrong