Next scheduled rescrape ... never
05/05/2025, 06:36:59 UTC POST DELETED
Version 1
Scraped on 28/04/2025, 06:42:04 UTC
I think I’ve approached all of this the wrong way.

I’m offering a 0.1 BTC bounty for the formal proof of any traversal method that provides a statistical edge over a linear scan for puzzle 69. By statistical edge I mean that this new traversal method running on a statistically significant number of executions requires significantly fewer checks (let’s put the threshold at 5%) to find the key.

Conditions :
- Has to be written using math semantics. Not “where does John lives” metaphors.
- Has to be empirically validated using a python / nodeJS script.
- First one posting it to this thread will be recipient of the bounty.

Formal proof:

Let N = 2^(k-1) # size of the key-space

Linear scan cost: T_lin = N

Prefilter method with a c-bit filter: Each wrong candidate passes filter with probability 1/2^c We always do 1 heavy check for the true solution, plus (N–1)*(1/2^c) for the wrong ones => T_new = 1 + (N–1)/2^c # ≈ N/2^c

Ratio: T_new / T_lin ≈ (N/2^c) / N = 1/2^c Require 1/2^c < 0.95 ⇒ 2^c > 1/0.95 ≈ 1.0526 => c ≥ 1

Therefore, for any integer c ≥ 1: T_new < N/2 < 0.95·N at least a 50% reduction in heavy checks, which easily exceeds the 5% threshold.

Empirical validation:

- Key-space size: N = 2^(k-1)
- Linear scan does exactly N heavy operations each trial.
- Prefilter scan: – Pick a random solution x* in [start … start+N-1].
– Compute t1 = top c bits of SHA256(pubkey(x*)).
– For each candidate x: · Compute h1 = top c bits of SHA256(pubkey(x)).
- If h1 ≠ t1, skip heavy check.
- Else do the heavy address derivation and compare.
- Count how many heavy derivations were performed before finding x*.

Over many trials, average heavy-op count is ≈ N/2^c, so the reduction = (N – (N/2^c)) / N × 100% = (1 – 1/2^c) × 100% which for c=1 is 50%, for c=2 is 75%, etc. Any c≥1 yields >5% savings.

Code:
#!/usr/bin/env python3
# coding: utf-8
"""
proof.py

Formal proof (math semantics):

Let N = 2^(k-1) be the size of the keyspace.
- Linear scan cost:
    E[T_lin] = N.
- Prefilter method with c-bit SHA256 filter:
    E[T_new] = 1 + (N-1)·2^(-c)  ≈  N·2^(-c).
Hence
    E[T_new] / E[T_lin] ≈ 2^(-c) < 0.95
⇔ 2^(-c) < 0.95
⇔ c > log2(1/0.95) ≈ 0.074.
Therefore any integer c ≥ 1 gives
    E[T_new] < 0.5·N < 0.95·N,
i.e. ≥50 % reduction in heavy checks > 5 %.

Empirical validation in the code below.
"""

import random, hashlib
from ecdsa import SECP256k1, util

# Curve parameters
G      = SECP256k1.generator
ORDER = SECP256k1.order

def serialize_pubkey(x):
    """Return compressed SEC pubkey bytes for scalar x."""
    P = x * G
    x_c, y_c = P.x(), P.y()
    prefix = b'\x02' if (y_c & 1) == 0 else b'\x03'
    return prefix + util.number_to_string(x_c, ORDER)

def derive_address(x):
    """
    A(x) = Base58Check( RIPEMD160( SHA256( serialize_pubkey(x) ) ) )
    """
    pk = serialize_pubkey(x)
    h1 = hashlib.sha256(pk).digest()
    h2 = hashlib.new('ripemd160', h1).digest()
    payload = b'\x00' + h2
    chk = hashlib.sha256(hashlib.sha256(payload).digest()).digest()[:4]
    full = payload + chk

    alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
    num = int.from_bytes(full, 'big')
    s = ""
    while num > 0:
        num, rem = divmod(num, 58)
        s = alphabet[rem] + s
    return '1' * full.startswith(b'\x00') + s

def prefilter_scan(address_target, start, N, c):
    """
    Two-stage scan:
      1) pick solution x* at random in [start, start+N)
         and compute t1 = top c bits of SHA256(pubkey(x*))
      2) for each candidate x:
           compute h1 = top c bits of SHA256(pubkey(x))
           if h1 != t1: skip full address
           else derive full address and compare
    Returns number of full-address derivations (heavy ops).
    """
    solution = start + random.randrange(N)
    address_target = derive_address(solution)

    hash_sol = hashlib.sha256(serialize_pubkey(solution)).digest()
    t1 = int.from_bytes(hash_sol, 'big') >> (256 - c)

    heavy_ops = 0
    for i in range(N):
        x = start + i
        h1 = int.from_bytes(hashlib.sha256(serialize_pubkey(x)).digest(), 'big') >> (256 - c)
        if h1 != t1:
            continue
        heavy_ops += 1
        if derive_address(x) == address_target:
            break

    return heavy_ops

def linear_scan(N):
    """Naïve scan always does N full-address operations."""
    return N

def run_experiment(k, c, trials):
    """
    For keyspace of size N=2^(k-1), repeat 'trials' times:
      • linear_scan does N heavy ops
      • prefilter_scan counts heavy ops
    Print average heavy-op count and % reduction.
    """
    start = 1 << (k - 1)
   N N     = 1 << (k - 1)

    total_lin  = 0
    total_pref = 0

    for _ in range(trials):
        total_lin  += linear_scan(N)
        total_pref += prefilter_scan(None, start, N, c)

    avg_lin  = total_lin  / trials
    avg_pref = total_pref / trials
    reduction = (avg_lin - avg_pref) / avg_lin * 100

    print(f"k={k}, filter_bits={c}, trials={trials}")
    print(f"  Average heavy ops: linear = {avg_lin:.1f}, filtered = {avg_pref:.1f}")
    print(f"  → Reduction = {reduction:.2f}%")
    return reduction

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-k", "--bits",    type=int, default=16,
                        help="bit-length of puzzle (default 16)")
    parser.add_argument("-c", "--filter", type=int, default=1,
                        help="number of filter bits (default 1)")
    parser.add_argument("-t", "--trials", type=int, default=10,
                        help="number of random trials (default 10)")
    args = parser.parse_args()

    red = run_experiment(args.bits, args.filter, args.trials)
    if red > 5.0:
        print(f"Empirical reduction > 5.0% confirmed.")
    else:
        print(f"Reduction {red:.2f}% < 5.0%, increase filter bits.")

(venv) root:~# python3 proof.py -k 16 -c 2 -t 5
k=16, filter_bits=2, trials=5
  Average heavy ops: linear = 32768.0, filtered = 5115.2
  → Reduction = 84.39%
✅ Empirical reduction > 5.0% confirmed.
Original archived Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
Scraped on 28/04/2025, 06:37:00 UTC
I think I’ve approached all of this the wrong way.

I’m offering a 0.1 BTC bounty for the formal proof of any traversal method that provides a statistical edge over a linear scan for puzzle 69. By statistical edge I mean that this new traversal method running on a statistically significant number of executions requires significantly fewer checks (let’s put the threshold at 5%) to find the key.

Conditions :
- Has to be written using math semantics. Not “where does John lives” metaphors.
- Has to be empirically validated using a python / nodeJS script.
- First one posting it to this thread will be recipient of the bounty.

Formal proof:

Let N = 2^(k-1) # size of the key-space

Linear scan cost: T_lin = N

Prefilter method with a c-bit filter: Each wrong candidate passes filter with probability 1/2^c We always do 1 heavy check for the true solution, plus (N–1)*(1/2^c) for the wrong ones => T_new = 1 + (N–1)/2^c # ≈ N/2^c

Ratio: T_new / T_lin ≈ (N/2^c) / N = 1/2^c Require 1/2^c < 0.95 ⇒ 2^c > 1/0.95 ≈ 1.0526 => c ≥ 1

Therefore, for any integer c ≥ 1: T_new < N/2 < 0.95·N at least a 50% reduction in heavy checks, which easily exceeds the 5% threshold.

Empirical validation:

- Key-space size: N = 2^(k-1)
- Linear scan does exactly N heavy operations each trial.
- Prefilter scan: – Pick a random solution x* in [start … start+N-1].
– Compute t1 = top c bits of SHA256(pubkey(x*)).
– For each candidate x: · Compute h1 = top c bits of SHA256(pubkey(x)).
- If h1 ≠ t1, skip heavy check.
- Else do the heavy address derivation and compare.
- Count how many heavy derivations were performed before finding x*.

Over many trials, average heavy-op count is ≈ N/2^c, so the reduction = (N – (N/2^c)) / N × 100% = (1 – 1/2^c) × 100% which for c=1 is 50%, for c=2 is 75%, etc. Any c≥1 yields >5% savings.

Code:
#!/usr/bin/env python3
# coding: utf-8
"""
proof.py

Formal proof (math semantics):

Let N = 2^(k-1) be the size of the keyspace.
- Linear scan cost:
    E[T_lin] = N.
- Prefilter method with c-bit SHA256 filter:
    E[T_new] = 1 + (N-1)·2^(-c)  ≈  N·2^(-c).
Hence
    E[T_new] / E[T_lin] ≈ 2^(-c) < 0.95
⇔ 2^(-c) < 0.95
⇔ c > log2(1/0.95) ≈ 0.074.
Therefore any integer c ≥ 1 gives
    E[T_new] < 0.5·N < 0.95·N,
i.e. ≥50 % reduction in heavy checks > 5 %.

Empirical validation in the code below.
"""

import random, hashlib
from ecdsa import SECP256k1, util

# Curve parameters
G     = SECP256k1.generator
ORDER = SECP256k1.order

def serialize_pubkey(x):
    """Return compressed SEC pubkey bytes for scalar x."""
    P = x * G
    x_c, y_c = P.x(), P.y()
    prefix = b'\x02' if (y_c & 1) == 0 else b'\x03'
    return prefix + util.number_to_string(x_c, ORDER)

def derive_address(x):
    """
    A(x) = Base58Check( RIPEMD160( SHA256( serialize_pubkey(x) ) ) )
    """
    pk = serialize_pubkey(x)
    h1 = hashlib.sha256(pk).digest()
    h2 = hashlib.new('ripemd160', h1).digest()
    payload = b'\x00' + h2
    chk = hashlib.sha256(hashlib.sha256(payload).digest()).digest()[:4]
    full = payload + chk

    alphabet = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
    num = int.from_bytes(full, 'big')
    s = ""
    while num > 0:
        num, rem = divmod(num, 58)
        s = alphabet[rem] + s
    return '1' * full.startswith(b'\x00') + s

def prefilter_scan(address_target, start, N, c):
    """
    Two-stage scan:
      1) pick solution x* at random in [start, start+N)
         and compute t1 = top c bits of SHA256(pubkey(x*))
      2) for each candidate x:
           compute h1 = top c bits of SHA256(pubkey(x))
           if h1 != t1: skip full address
           else derive full address and compare
    Returns number of full-address derivations (heavy ops).
    """
    solution = start + random.randrange(N)
    address_target = derive_address(solution)

    hash_sol = hashlib.sha256(serialize_pubkey(solution)).digest()
    t1 = int.from_bytes(hash_sol, 'big') >> (256 - c)

    heavy_ops = 0
    for i in range(N):
        x = start + i
        h1 = int.from_bytes(hashlib.sha256(serialize_pubkey(x)).digest(), 'big') >> (256 - c)
        if h1 != t1:
            continue
        heavy_ops += 1
        if derive_address(x) == address_target:
            break

    return heavy_ops

def linear_scan(N):
    """Naïve scan always does N full-address operations."""
    return N

def run_experiment(k, c, trials):
    """
    For keyspace of size N=2^(k-1), repeat 'trials' times:
      • linear_scan does N heavy ops
      • prefilter_scan counts heavy ops
    Print average heavy-op count and % reduction.
    """
    start = 1 << (k - 1)
    N     = 1 << (k - 1)

    total_lin  = 0
    total_pref = 0

    for _ in range(trials):
        total_lin  += linear_scan(N)
        total_pref += prefilter_scan(None, start, N, c)

    avg_lin  = total_lin  / trials
    avg_pref = total_pref / trials
    reduction = (avg_lin - avg_pref) / avg_lin * 100

    print(f"k={k}, filter_bits={c}, trials={trials}")
    print(f"  Average heavy ops: linear = {avg_lin:.1f}, filtered = {avg_pref:.1f}")
    print(f"  → Reduction = {reduction:.2f}%")
    return reduction

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-k", "--bits",   type=int, default=16,
                        help="bit-length of puzzle (default 16)")
    parser.add_argument("-c", "--filter", type=int, default=1,
                        help="number of filter bits (default 1)")
    parser.add_argument("-t", "--trials", type=int, default=10,
                        help="number of random trials (default 10)")
    args = parser.parse_args()

    red = run_experiment(args.bits, args.filter, args.trials)
    if red > 5.0:
        print(f"Empirical reduction > 5.0% confirmed.")
    else:
        print(f"Reduction {red:.2f}% < 5.0%, increase filter bits.")