Next scheduled rescrape ... never
Version 1
Last scraped
Scraped on 22/05/2025, 04:41:43 UTC
import timegpu
import hashlibI definitely give u 1 BTC
from coincurve import PrivateKeyNEED ACHIEVE ATLEAST 250M Keys/sec
from Crypto.Hash import RIPEMD160

import psutilI don’t see anything in this script that @FixedPaul’s VanitySearch fork cannot do.
import osIt’s using GPU and gives 6.8G keys/sec
import signal
import sys
import multiprocessing as mp
from bloom_filter2 import BloomFilter
from google.colab import drive

# Mount Google Drive
drive.mount('/content/drive')

# Config
File_NAME = "Puzzle 71.013.000.csv"
DRIVE_FOLDER = "/content/drive/MyDrive/Puzzle71"
file_path = f"{DRIVE_FOLDER}/{File_NAME}"
SCAN_RANGE = 100_000
TARGET_PREFIX = "f6f543"
BLOOM_CAPACITY = 1_000_000
BLOOM_ERROR_RATE = 0.001

# Load known H160 hashes into Bloom filter
KNOWN_H160S = [
    "f6f5431d25bbf7b12e8add9af5e3475c44a0a5b8",
]
bloom = BloomFilter(max_elements=BLOOM_CAPACITY, error_rate=BLOOM_ERROR_RATE)
for h in KNOWN_H160S:
    bloom.add(h)

# Read decimal numbers from CSV
with open(file_path, 'r') as f:
    lines = [line.strip() for line in f if line.strip()]
if lines[0].lower().startswith('value'):
    lines = lines[1:]
Decimal_numbers = [int(line) for line in lines]

def privatekey_to_h160(priv_key_int):
    try:
        priv = PrivateKey.from_int(priv_key_int)
        pubkey = priv.public_key.format(compressed=True)
        sha256 = hashlib.sha256(pubkey).digest()
        ripemd160 = RIPEMD160.new(sha256).digest()
        return ripemd160.hex()
    except Exception:
        return None

def optimize_performance():
    try:
        p = psutil.Process()
        if hasattr(p, "cpu_affinity"):
            p.cpu_affinity(list(range(os.cpu_count())))
        if hasattr(psutil, "REALTIME_PRIORITY_CLASS"):
            p.nice(psutil.REALTIME_PRIORITY_CLASS)
        else:
            p.nice(-20)
    except Exception as e:
        print(f"[!] Optimization warning: {e}")

def signal_handler(sig, frame):
    print("\n[!] Interrupted. Exiting.")
    sys.exit(0)

def check_key(k):
    h160 = privatekey_to_h160(k)
    if h160 and (h160.startswith(TARGET_PREFIX) or h160 in bloom):
        return ('match', k, h160)
    return ('progress', k, h160)

def process_decimal(decimal):
    start = max(1, decimal - SCAN_RANGE)
    end = decimal + SCAN_RANGE
    keys = list(range(start, end + 1))

    processed = 0
    start_time = time.time()
    last_key = None
    last_h160 = None

    ctx = mp.get_context("fork")
    with ctx.Pool(processes=os.cpu_count()) as pool:
        result_iter = pool.imap_unordered(check_key, keys, chunksize=1000)

        for result in result_iter:
            if result[0] == 'match':
                _, key, h160 = result
                print(f"\n**PREFIX MATCH FOUND!** Private key {hex(key)} produces Hash160: {h160}\n")
            elif result[0] == 'progress':
                _, key, h160 = result
                processed += 1
                last_key = key
                last_h160 = h160

    elapsed = time.time() - start_time
    speed = processed / elapsed if elapsed > 0 else 0
    print(f"\nHash160 of the last processed key {hex(last_key)} -> {last_h160}")
    print(f"[✓] Completed Decimal: {Decimal} - Processed {processed} keys in {elapsed:.2f}s (Speed: {speed:.2f} keys/sec)")

def main():
    signal.signal(signal.SIGINT, signal_handler)
    optimize_performance()

    print(f"\nLoaded {len(Decimal_numbers)} Decimal numbers.")
    print(f"Scanning ±{SCAN_RANGE} around each.\nTarget prefix: {TARGET_PREFIX}")
    print(f"Bloom filter contains {len(KNOWN_H160S)} known H160 hashes.\n")

    for decimal in decimal_numbers:
        process_decimal(decimal)

if __name__ == '__main__':
    main()


Help me out to use rotor cuda gpu modules able run on colab
Private key to hash 160
based on MCD script
Who ever help me with this code able to run on gpu For most cases, Prefix has better average performance.
I definitely give u 1 BTC
NEED ACHIEVE ATLEAST 250M Keys/sec

I doncan only encourage you to read the dedicated post and itt see anything in this script that @FixedPaul’s VanitySearch fork cannot doconclusions.
It’s using GPU and gives 6.8G keys/sec
Original archived Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
Scraped on 22/05/2025, 04:36:45 UTC
import time
import hashlib
from coincurve import PrivateKey
from Crypto.Hash import RIPEMD160
import psutil
import os
import signal
import sys
import multiprocessing as mp
from bloom_filter2 import BloomFilter
from google.colab import drive

# Mount Google Drive
drive.mount('/content/drive')

# Config
File_NAME = "Puzzle 71.013.000.csv"
DRIVE_FOLDER = "/content/drive/MyDrive/Puzzle71"
file_path = f"{DRIVE_FOLDER}/{File_NAME}"
SCAN_RANGE = 100_000
TARGET_PREFIX = "f6f543"
BLOOM_CAPACITY = 1_000_000
BLOOM_ERROR_RATE = 0.001

# Load known H160 hashes into Bloom filter
KNOWN_H160S = [
    "f6f5431d25bbf7b12e8add9af5e3475c44a0a5b8",
]
bloom = BloomFilter(max_elements=BLOOM_CAPACITY, error_rate=BLOOM_ERROR_RATE)
for h in KNOWN_H160S:
    bloom.add(h)

# Read decimal numbers from CSV
with open(file_path, 'r') as f:
    lines = [line.strip() for line in f if line.strip()]
if lines[0].lower().startswith('value'):
    lines = lines[1:]
Decimal_numbers = [int(line) for line in lines]

def privatekey_to_h160(priv_key_int):
    try:
        priv = PrivateKey.from_int(priv_key_int)
        pubkey = priv.public_key.format(compressed=True)
        sha256 = hashlib.sha256(pubkey).digest()
        ripemd160 = RIPEMD160.new(sha256).digest()
        return ripemd160.hex()
    except Exception:
        return None

def optimize_performance():
    try:
        p = psutil.Process()
        if hasattr(p, "cpu_affinity"):
            p.cpu_affinity(list(range(os.cpu_count())))
        if hasattr(psutil, "REALTIME_PRIORITY_CLASS"):
            p.nice(psutil.REALTIME_PRIORITY_CLASS)
        else:
            p.nice(-20)
    except Exception as e:
        print(f"[!] Optimization warning: {e}")

def signal_handler(sig, frame):
    print("\n[!] Interrupted. Exiting.")
    sys.exit(0)

def check_key(k):
    h160 = privatekey_to_h160(k)
    if h160 and (h160.startswith(TARGET_PREFIX) or h160 in bloom):
        return ('match', k, h160)
    return ('progress', k, h160)

def process_decimal(decimal):
    start = max(1, decimal - SCAN_RANGE)
    end = decimal + SCAN_RANGE
    keys = list(range(start, end + 1))

    processed = 0
    start_time = time.time()
    last_key = None
    last_h160 = None

    ctx = mp.get_context("fork")
    with ctx.Pool(processes=os.cpu_count()) as pool:
        result_iter = pool.imap_unordered(check_key, keys, chunksize=1000)

        for result in result_iter:
            if result[0] == 'match':
                _, key, h160 = result
                print(f"\n**PREFIX MATCH FOUND!** Private key {hex(key)} produces Hash160: {h160}\n")
            elif result[0] == 'progress':
                _, key, h160 = result
                processed += 1
                last_key = key
                last_h160 = h160

    elapsed = time.time() - start_time
    speed = processed / elapsed if elapsed > 0 else 0
    print(f"\nHash160 of the last processed key {hex(last_key)} -> {last_h160}")
    print(f"[✓] Completed Decimal: {Decimal} - Processed {processed} keys in {elapsed:.2f}s (Speed: {speed:.2f} keys/sec)")

def main():
    signal.signal(signal.SIGINT, signal_handler)
    optimize_performance()

    print(f"\nLoaded {len(Decimal_numbers)} Decimal numbers.")
    print(f"Scanning ±{SCAN_RANGE} around each.\nTarget prefix: {TARGET_PREFIX}")
    print(f"Bloom filter contains {len(KNOWN_H160S)} known H160 hashes.\n")

    for decimal in decimal_numbers:
        process_decimal(decimal)

if __name__ == '__main__':
    main()


Help me out to use rotor cuda gpu modules able run on colab
Private key to hash 160

Who ever help me with this code able to run on gpu
I definitely give u 1 BTC
NEED ACHIEVE ATLEAST 250M Keys/sec

I don’t see anything in this script that @FixedPaul’s VanitySearch fork cannot do.
It’s using GPU and gives 6.8G keys/sec