1. Thread-Based Work Distribution
Added: Thread management with std::thread
Changed: Split work into N equal ranges (where N = worker count)
Benefit: Evenly distributes workload across all CPU cores
2. Thread-Local Randomization
Added: Per-thread Mersenne Twister RNG (mt19937_64)
Changed: Fisher-Yates shuffle within each thread's range only
Benefit: Eliminates contention while maintaining randomness
3. Range-Based Processing
Added: Explicit start/end indices for each thread
Removed: Global sequential counter
Benefit: No shared state between threads
4. Progress Reporting Optimization
Changed: Time-based (1 second) instead of count-based updates
Added: Atomic timestamp for coordination
Benefit: Reduces console I/O overhead
5. Result Handling
Added: Thread-safe queue for results
Changed: Early termination when solution found
Benefit: Fast termination without losing results
#include <iostream>
#include <array>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <vector>
#include <thread>
#include <atomic>
#include <chrono>
#include <queue>
#include <mutex>
#include <cstring>
#include <unordered_map>
#include <cmath>
#include <immintrin.h>
#include <omp.h>
#include <csignal>
#include <random>
#include <algorithm>
#include <getopt.h>
#ifdef _WIN32
#include <windows.h>
#endif
// Include the required headers
#include "sha256_avx2.h"
#include "ripemd160_avx2.h"
#include "SECP256K1.h"
#include "Point.h"
#include "Int.h"
#include "IntGroup.h"
using namespace std;
// Cross-platform terminal functions
void initConsole() {
#ifdef _WIN32
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
DWORD mode = 0;
GetConsoleMode(hConsole, &mode);
SetConsoleMode(hConsole, mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
#endif
}
void clearTerminal() {
#ifdef _WIN32
HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
COORD coord = {0, 0};
DWORD count;
CONSOLE_SCREEN_BUFFER_INFO csbi;
GetConsoleScreenBufferInfo(hStdOut, &csbi);
FillConsoleOutputCharacter(hStdOut, ' ', csbi.dwSize.X * csbi.dwSize.Y, coord, &count);
SetConsoleCursorPosition(hStdOut, coord);
#else
std::cout << "\033[2J\033[H";
#endif
std::cout.flush();
}
void moveCursorTo(int x, int y) {
#ifdef _WIN32
HANDLE hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);
COORD coord = {(SHORT)x, (SHORT)y};
SetConsoleCursorPosition(hStdOut, coord);
#else
std::cout << "\033[" << y << ";" << x << "H";
#endif
std::cout.flush();
}
// Configuration
int PUZZLE_NUM = 20;
int WORKERS = omp_get_num_procs();
int FLIP_COUNT = -1;
static constexpr int POINTS_BATCH_SIZE = 256;
static constexpr int HASH_BATCH_SIZE = 8;
// Puzzle data
const unordered_map<int, tuple<int, string, string>> PUZZLE_DATA = {
{20, {8, "b907c3a2a3b27789dfb509b730dd47703c272868", "357535"}},
{21, {9, "29a78213caa9eea824acf08022ab9dfc83414f56", "863317"}},
{22, {11, "7ff45303774ef7a52fffd8011981034b258cb86b", "1811764"}},
{23, {12, "d0a79df189fe1ad5c306cc70497b358415da579e", "3007503"}},
{24, {9, "0959e80121f36aea13b3bad361c15dac26189e2f", "5598802"}},
{25, {12, "2f396b29b27324300d0c59b17c3abc1835bd3dbb", "14428676"}},
{26, {14, "bfebb73562d4541b32a02ba664d140b5a574792f", "33185509"}},
{27, {13, "0c7aaf6caa7e5424b63d317f0f8f1f9fa40d5560", "54538862"}},
{28, {16, "1306b9e4ff56513a476841bac7ba48d69516b1da", "111949941"}},
{29, {18, "5a416cc9148f4a377b672c8ae5d3287adaafadec", "227634408"}},
{30, {16, "d39c4704664e1deb76c9331e637564c257d68a08", "400708894"}},
{31, {13, "d805f6f251f7479ebd853b3d0f4b9b2656d92f1d", "1033162084"}},
{32, {14, "9e42601eeaedc244e15f17375adb0e2cd08efdc9", "2102388551"}},
{33, {15, "4e15e5189752d1eaf444dfd6bff399feb0443977", "3093472814"}},
{34, {16, "f6d67d7983bf70450f295c9cb828daab265f1bfa", "7137437912"}},
{35, {19, "f6d8ce225ffbdecec170f8298c3fc28ae686df25", "14133072157"}},
{36, {14, "74b1e012be1521e5d8d75e745a26ced845ea3d37", "20112871792"}},
{37, {23, "28c30fb11ed1da72e7c4f89c0164756e8a021d", "42387769980"}},
{38, {21, "b190e2d40cfdeee2cee072954a2be89e7ba39364", "100251560595"}},
{39, {23, "0b304f2a79a027270276533fe1ed4eff30910876", "146971536592"}},
{40, {20, "95a156cd21b4a69de969eb6716864f4c8b82a82a", "323724968937"}},
{41, {25, "d1562eb37357f9e6fc41cb2359f4d3eda4032329", "1003651412950"}},
{42, {24, "8efb85f9c5b5db2d55973a04128dc7510075ae23", "1458252205147"}},
{43, {19, "f92044c7924e5525c61207972c253c9fc9f086f7", "2895374552463"}},
{44, {24, "80df54e1f612f2fc5bdc05c9d21a83aa8d20791e", "7409811047825"}},
{45, {21, "f0225bfc68a6e17e87cd8b5e60ae3be18f120753", "15404761757071"}},
{46, {24, "9a012260d01c5113df66c8a8438c9f7a1e3d5dac", "19996463086597"}},
{47, {27, "f828005d41b0f4fed4c8dca3b06011072cfb07d4", "51408670348612"}},
{48, {21, "8661cb56d9df0a61f01328b55af7e56a3fe7a2b2", "119666659114170"}},
{49, {30, "0d2f533966c6578e1111978ca698f8add7fffdf3", "191206974700443"}},
{50, {29, "de081b76f840e462fa2cdf360173dfaf4a976a47", "409118905032525"}},
{51, {25, "ef6419cffd7fad7027994354eb8efae223c2dbe7", "611140496167764"}},
{52, {27, "36af659edbe94453f6344e920d143f1778653ae7", "2058769515153876"}},
{53, {26, "2f4870ef54fa4b048c1365d42594cc7d3d269551", "4216495639600700"}},
{54, {30, "cb66763cf7fde659869ae7f06884d9a0f879a092", "6763683971478124"}},
{55, {31, "db53d9bbd1f3a83b094eeca7dd970bd85b492fa2", "9974455244496707"}},
{56, {31, "48214c5969ae9f43f75070cea1e2cb41d5bdcccd", "30045390491869460"}},
{57, {33, "328660ef43f66abe2653fa178452a5dfc594c2a1", "44218742292676575"}},
{58, {28, "8c2a6071f89c90c4dab5ab295d7729d1b54ea60f", "138245758910846492"}},
{59, {30, "b14ed3146f5b2c9bde1703deae9ef33af8110210", "199976667976342049"}},
{60, {31, "cdf8e5c7503a9d22642e3ecfc87817672787b9c5", "525070384258266191"}},
{61, {25, "68133e19b2dfb9034edf9830a200cfdf38c90cbd", "1135041350219496382"}},
{62, {35, "e26646db84b0602f32b34b5a62ca3cae1f91b779", "1425787542618654982"}},
{63, {34, "ef58afb697b094423ce90721fbb19a359ef7c50e", "3908372542507822062"}},
{64, {34, "3ee4133d991f52fdf6a25c9834e0745ac74248a4", "8993229949524469768"}},
{65, {37, "52e763a7ddc1aa4fa811578c491c1bc7fd570137", "17799667357578236628"}},
{66, {35, "20d45a6a762535700ce9e0b216e31994335db8a5", "30568377312064202855"}},
{67, {31, "739437bb3dd6d1983e66629c5f08c70e52769371", "46346217550346335726"}},
{68, {34, "e0b8a2baee1b77fc703455f39d51477451fc8cfc", "132656943602386256302"}}
};
// Global variables
vector<unsigned char> TARGET_HASH160_RAW(20);
string TARGET_HASH160;
Int BASE_KEY;
atomic<bool> stop_event(false);
mutex result_mutex;
queue<tuple<string, size_t, int>> results;
atomic<size_t> total_checked(0);
size_t total_combinations = 0;
vector<string> g_threadPrivateKeys;
mutex progress_mutex;
// Performance tracking
atomic<uint64_t> globalComparedCount(0);
atomic<uint64_t> localComparedCount(0);
double globalElapsedTime = 0.0;
double mkeysPerSec = 0.0;
chrono::time_point<chrono::high_resolution_clock> tStart;
atomic<chrono::time_point<chrono::high_resolution_clock>> lastReportTime(chrono::high_resolution_clock::now());
string formatElapsedTime(double seconds) {
int hrs = static_cast<int>(seconds) / 3600;
int mins = (static_cast<int>(seconds) % 3600) / 60;
int secs = static_cast<int>(seconds) % 60;
ostringstream oss;
oss << setw(2) << setfill('0') << hrs << ":"
<< setw(2) << setfill('0') << mins << ":"
<< setw(2) << setfill('0') << secs;
return oss.str();
}
void signalHandler(int signum) {
stop_event.store(true);
cout << "\nInterrupt received, shutting down...\n";
}
class CombinationGenerator {
int n, k;
vector<int> current;
public:
CombinationGenerator(int n, int k) : n(n), k(k), current(k) {
for (int i = 0; i < k; ++i) current[i] = i;
}
static size_t combinations_count(int n, int k) {
if (k > n) return 0;
if (k * 2 > n) k = n - k;
if (k == 0) return 1;
size_t result = n;
for(int i = 2; i <= k; ++i) {
result *= (n - i + 1);
result /= i;
}
return result;
}
const vector<int>& get() const { return current; }
bool next() {
int i = k - 1;
while (i >= 0 && current[i] == n - k + i) --i;
if (i < 0) return false;
++current[i];
for (int j = i + 1; j < k; ++j)
current[j] = current[j-1] + 1;
return true;
}
void unrank(size_t rank) {
if (rank >= combinations_count(n, k)) {
current.clear();
return;
}
current.resize(k);
size_t remaining_rank = rank;
int a = n;
int b = k;
size_t x = (combinations_count(n, k) - 1) - rank;
for (int i = 0; i < k; i++) {
a = largest_a_where_comb_a_b_le_x(a, b, x);
current[i] = (n - 1) - a;
x -= combinations_count(a, b);
b--;
}
}
private:
int largest_a_where_comb_a_b_le_x(int a, int b, size_t x) const {
while (a >= b && combinations_count(a, b) > x) {
a--;
}
return a;
}
};
inline void prepareShaBlock(const uint8_t* dataSrc, size_t dataLen, uint8_t* outBlock) {
std::fill_n(outBlock, 64, 0);
std::memcpy(outBlock, dataSrc, dataLen);
outBlock[dataLen] = 0x80;
const uint32_t bitLen = (uint32_t)(dataLen * 8);
outBlock[60] = (uint8_t)((bitLen >> 24) & 0xFF);
outBlock[61] = (uint8_t)((bitLen >> 16) & 0xFF);
outBlock[62] = (uint8_t)((bitLen >> 8) & 0xFF);
outBlock[63] = (uint8_t)( bitLen & 0xFF);
}
inline void prepareRipemdBlock(const uint8_t* dataSrc, uint8_t* outBlock) {
std::fill_n(outBlock, 64, 0);
std::memcpy(outBlock, dataSrc, 32);
outBlock[32] = 0x80;
const uint32_t bitLen = 256;
outBlock[60] = (uint8_t)((bitLen >> 24) & 0xFF);
outBlock[61] = (uint8_t)((bitLen >> 16) & 0xFF);
outBlock[62] = (uint8_t)((bitLen >> 8) & 0xFF);
outBlock[63] = (uint8_t)( bitLen & 0xFF);
}
static void computeHash160BatchBinSingle(int numKeys,
uint8_t pubKeys[][33],
uint8_t hashResults[][20])
{
alignas(32) std::array<std::array<uint8_t, 64>, HASH_BATCH_SIZE> shaInputs;
alignas(32) std::array<std::array<uint8_t, 32>, HASH_BATCH_SIZE> shaOutputs;
alignas(32) std::array<std::array<uint8_t, 64>, HASH_BATCH_SIZE> ripemdInputs;
alignas(32) std::array<std::array<uint8_t, 20>, HASH_BATCH_SIZE> ripemdOutputs;
const size_t totalBatches = (numKeys + (HASH_BATCH_SIZE - 1)) / HASH_BATCH_SIZE;
for (size_t batch = 0; batch < totalBatches; batch++) {
const size_t batchCount = std::min<size_t>(HASH_BATCH_SIZE, numKeys - batch * HASH_BATCH_SIZE);
// Prepare SHA-256 input blocks
for (size_t i = 0; i < batchCount; i++) {
prepareShaBlock(pubKeys[batch * HASH_BATCH_SIZE + i], 33, shaInputs[i].data());
}
if (batchCount < HASH_BATCH_SIZE) {
static std::array<uint8_t, 64> shaPadding = {};
prepareShaBlock(pubKeys[0], 33, shaPadding.data());
for (size_t i = batchCount; i < HASH_BATCH_SIZE; i++) {
std::memcpy(shaInputs[i].data(), shaPadding.data(), 64);
}
}
const uint8_t* inPtr[HASH_BATCH_SIZE];
uint8_t* outPtr[HASH_BATCH_SIZE];
for (int i = 0; i < HASH_BATCH_SIZE; i++) {
inPtr[i] = shaInputs[i].data();
outPtr[i] = shaOutputs[i].data();
}
sha256avx2_8B(inPtr[0], inPtr[1], inPtr[2], inPtr[3],
inPtr[4], inPtr[5], inPtr[6], inPtr[7],
outPtr[0], outPtr[1], outPtr[2], outPtr[3],
outPtr[4], outPtr[5], outPtr[6], outPtr[7]);
for (size_t i = 0; i < batchCount; i++) {
prepareRipemdBlock(shaOutputs[i].data(), ripemdInputs[i].data());
}
if (batchCount < HASH_BATCH_SIZE) {
static std::array<uint8_t, 64> ripemdPadding = {};
prepareRipemdBlock(shaOutputs[0].data(), ripemdPadding.data());
for (size_t i = batchCount; i < HASH_BATCH_SIZE; i++) {
std::memcpy(ripemdInputs[i].data(), ripemdPadding.data(), 64);
}
}
for (int i = 0; i < HASH_BATCH_SIZE; i++) {
inPtr[i] = ripemdInputs[i].data();
outPtr[i] = ripemdOutputs[i].data();
}
ripemd160avx2::ripemd160avx2_32(
(unsigned char*)inPtr[0], (unsigned char*)inPtr[1],
(unsigned char*)inPtr[2], (unsigned char*)inPtr[3],
(unsigned char*)inPtr[4], (unsigned char*)inPtr[5],
(unsigned char*)inPtr[6], (unsigned char*)inPtr[7],
outPtr[0], outPtr[1], outPtr[2], outPtr[3],
outPtr[4], outPtr[5], outPtr[6], outPtr[7]
);
for (size_t i = 0; i < batchCount; i++) {
std::memcpy(hashResults[batch * HASH_BATCH_SIZE + i], ripemdOutputs[i].data(), 20);
}
}
}
void worker(Secp256K1* secp, int bit_length, int flip_count, int threadId,
size_t start, size_t end, mt19937_64& rng) {
const int fullBatchSize = 2 * POINTS_BATCH_SIZE;
uint8_t localPubKeys[HASH_BATCH_SIZE][33];
uint8_t localHashResults[HASH_BATCH_SIZE][20];
int pointIndices[HASH_BATCH_SIZE];
// Precompute points
vector<Point> plusPoints(POINTS_BATCH_SIZE);
vector<Point> minusPoints(POINTS_BATCH_SIZE);
for (int i = 0; i < POINTS_BATCH_SIZE; i++) {
Int tmp; tmp.SetInt32(i);
plusPoints[i] = secp->ComputePublicKey(&tmp);
minusPoints[i] = plusPoints[i];
minusPoints[i].y.ModNeg();
}
// Structure of Arrays
vector<Int> deltaX(POINTS_BATCH_SIZE);
IntGroup modGroup(POINTS_BATCH_SIZE);
vector<Int> pointBatchX(fullBatchSize);
vector<Int> pointBatchY(fullBatchSize);
CombinationGenerator gen(bit_length, flip_count);
// Create and shuffle indices within thread's range
vector<size_t> indices;
indices.reserve(end - start);
for(size_t i = start; i < end; i++) {
indices.push_back(i);
}
// Fisher-Yates shuffle only within this thread's range
for(size_t i = indices.size() - 1; i > 0; --i) {
size_t j = rng() % (i + 1);
swap(indices[i], indices[j]);
}
size_t processed = 0;
for (size_t rank : indices) {
if(stop_event.load()) break;
gen.unrank(rank);
Int currentKey;
currentKey.Set(&BASE_KEY);
const vector<int>& flips = gen.get();
// Apply flips
for (int pos : flips) {
Int mask;
mask.SetInt32(1);
mask.ShiftL(pos);
Int temp;
temp.Set(¤tKey);
temp.ShiftR(pos);
if (temp.IsEven()) {
currentKey.Add(&mask);
} else {
currentKey.Sub(&mask);
}
}
// Verify key length
string keyStr = currentKey.GetBase16();
keyStr = string(64 - keyStr.length(), '0') + keyStr;
#pragma omp critical
{
g_threadPrivateKeys[threadId] = keyStr;
}
// Compute public key and process in batches
Point startPoint = secp->ComputePublicKey(¤tKey);
Int startPointX, startPointY, startPointXNeg;
startPointX.Set(&startPoint.x);
startPointY.Set(&startPoint.y);
startPointXNeg.Set(&startPointX);
startPointXNeg.ModNeg();
// Compute deltaX values in batches of 4 (optimized)
for (int i = 0; i < POINTS_BATCH_SIZE; i += 4) {
deltaX[i].ModSub(&plusPoints[i].x, &startPointX);
deltaX[i+1].ModSub(&plusPoints[i+1].x, &startPointX);
deltaX[i+2].ModSub(&plusPoints[i+2].x, &startPointX);
deltaX[i+3].ModSub(&plusPoints[i+3].x, &startPointX);
}
modGroup.Set(deltaX.data());
modGroup.ModInv();
// Process plus and minus points in batches
for (int i = 0; i < POINTS_BATCH_SIZE; i += 4) {
for (int j = 0; j < 4; j++) {
// Plus points (0..255)
Int deltaY; deltaY.ModSub(&plusPoints[i+j].y, &startPointY);
Int slope; slope.ModMulK1(&deltaY, &deltaX[i+j]);
Int slopeSq; slopeSq.ModSquareK1(&slope);
pointBatchX[i+j].Set(&startPointXNeg);
pointBatchX[i+j].ModAdd(&slopeSq);
pointBatchX[i+j].ModSub(&plusPoints[i+j].x);
Int diffX; diffX.ModSub(&startPointX, &pointBatchX[i+j]);
diffX.ModMulK1(&slope);
pointBatchY[i+j].Set(&startPointY);
pointBatchY[i+j].ModNeg();
pointBatchY[i+j].ModAdd(&diffX);
// Minus points (256..511)
deltaY.ModSub(&minusPoints[i+j].y, &startPointY);
slope.ModMulK1(&deltaY, &deltaX[i+j]);
slopeSq.ModSquareK1(&slope);
pointBatchX[POINTS_BATCH_SIZE+i+j].Set(&startPointXNeg);
pointBatchX[POINTS_BATCH_SIZE+i+j].ModAdd(&slopeSq);
pointBatchX[POINTS_BATCH_SIZE+i+j].ModSub(&minusPoints[i+j].x);
diffX.ModSub(&startPointX, &pointBatchX[POINTS_BATCH_SIZE+i+j]);
diffX.ModMulK1(&slope);
pointBatchY[POINTS_BATCH_SIZE+i+j].Set(&startPointY);
pointBatchY[POINTS_BATCH_SIZE+i+j].ModNeg();
pointBatchY[POINTS_BATCH_SIZE+i+j].ModAdd(&diffX);
}
}
// Process keys in optimized batches
int localBatchCount = 0;
for (int i = 0; i < fullBatchSize && localBatchCount < HASH_BATCH_SIZE; i++) {
Point tempPoint;
tempPoint.x.Set(&pointBatchX[i]);
tempPoint.y.Set(&pointBatchY[i]);
// Convert to compressed public key
localPubKeys[localBatchCount][0] = tempPoint.y.IsEven() ? 0x02 : 0x03;
for (int j = 0; j < 32; j++) {
localPubKeys[localBatchCount][1 + j] = pointBatchX[i].GetByte(31 - j);
}
pointIndices[localBatchCount] = i;
localBatchCount++;
if (localBatchCount == HASH_BATCH_SIZE) {
computeHash160BatchBinSingle(localBatchCount, localPubKeys, localHashResults);
localComparedCount += HASH_BATCH_SIZE;
__m256i target = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(TARGET_HASH160_RAW.data()));
for (int j = 0; j < HASH_BATCH_SIZE; j++) {
__m256i result = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(localHashResults[j]));
int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(result, target));
const int HASH160_MASK = (1 << 20) - 1;
if ((mask & HASH160_MASK) == HASH160_MASK) {
bool fullMatch = true;
for (int k = 0; k < 20; k++) {
if (localHashResults[j][k] != TARGET_HASH160_RAW[k]) {
fullMatch = false;
break;
}
}
if (fullMatch) {
auto tEndTime = chrono::high_resolution_clock::now();
globalElapsedTime = chrono::duration<double>(tEndTime - tStart).count();
mkeysPerSec = (double)(globalComparedCount + localComparedCount) / globalElapsedTime / 1e6;
Int foundKey;
foundKey.Set(¤tKey);
int idx = pointIndices[j];
if (idx < POINTS_BATCH_SIZE) {
Int offset; offset.SetInt32(idx);
foundKey.Add(&offset);
} else {
Int offset; offset.SetInt32(idx - POINTS_BATCH_SIZE);
foundKey.Sub(&offset);
}
string hexKey = foundKey.GetBase16();
hexKey = string(64 - hexKey.length(), '0') + hexKey;
lock_guard<mutex> lock(result_mutex);
results.push(make_tuple(hexKey, total_checked.load(), flip_count));
stop_event.store(true);
return;
}
}
}
// Count this as one combination checked
processed++;
if(processed % 1000 == 0) {
total_checked += 1000;
}
localBatchCount = 0;
// Progress reporting - once per second
auto now = chrono::high_resolution_clock::now();
if (chrono::duration<double>(now - lastReportTime.load()).count() >= 1.0 ||
processed == indices.size()) {
globalElapsedTime = chrono::duration<double>(now - tStart).count();
globalComparedCount += localComparedCount;
localComparedCount = 0;
mkeysPerSec = (double)globalComparedCount / globalElapsedTime / 1e6;
double progress = min(100.0, (double)total_checked / total_combinations * 100.0);
lock_guard<mutex> lock(progress_mutex);
moveCursorTo(0, 9);
cout << "Progress: " << fixed << setprecision(6) << progress << "%\n";
cout << "Processed: " << total_checked << " / " << total_combinations << "\n";
cout << "Speed: " << fixed << setprecision(2) << mkeysPerSec << " Mkeys/s\n";
cout << "Elapsed Time: " << formatElapsedTime(globalElapsedTime) << "\n";
cout.flush();
lastReportTime.store(now);
}
}
}
}
total_checked += (processed % 1000);
}
void printUsage(const char* programName) {
cout << "Usage: " << programName << " [options]\n";
cout << "Options:\n";
cout << " -p, --puzzle NUM Puzzle number to solve (default: 20)\n";
cout << " -t, --threads NUM Number of CPU cores to use (default: all)\n";
cout << " -f, --flips NUM Override default flip count for puzzle\n";
cout << " -h, --help Show this help message\n";
cout << "\nExample:\n";
cout << " " << programName << " -p 38 -t 8 -f 21\n";
}
int main(int argc, char* argv[]) {
signal(SIGINT, signalHandler);
initConsole();
// Parse command line arguments
int opt;
int option_index = 0;
static struct option long_options[] = {
{"puzzle", required_argument, 0, 'p'},
{"threads", required_argument, 0, 't'},
{"flips", required_argument, 0, 'f'},
{"help", no_argument, 0, 'h'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "p:t:f:h", long_options, &option_index)) != -1) {
if (opt == -1) break;
switch (opt) {
case 'p':
PUZZLE_NUM = atoi(optarg);
if (PUZZLE_NUM < 20 || PUZZLE_NUM > 68) {
cerr << "Error: Puzzle number must be between 20 and 68\n";
return 1;
}
break;
case 't':
WORKERS = atoi(optarg);
if (WORKERS < 1) {
cerr << "Error: Thread count must be at least 1\n";
return 1;
}
break;
case 'f':
FLIP_COUNT = atoi(optarg);
if (FLIP_COUNT < 1) {
cerr << "Error: Flip count must be at least 1\n";
return 1;
}
break;
case 'h':
printUsage(argv[0]);
return 0;
default:
printUsage(argv[0]);
return 1;
}
}
// Initialize timing at the very start
tStart = chrono::high_resolution_clock::now();
Secp256K1 secp;
secp.Init();
auto puzzle_it = PUZZLE_DATA.find(PUZZLE_NUM);
if (puzzle_it == PUZZLE_DATA.end()) {
cerr << "Error: Invalid puzzle number\n";
return 1;
}
auto [DEFAULT_FLIP_COUNT, TARGET_HASH160_HEX, PRIVATE_KEY_DECIMAL] = puzzle_it->second;
// Use override flip count if provided, otherwise use puzzle default
if (FLIP_COUNT == -1) {
FLIP_COUNT = DEFAULT_FLIP_COUNT;
}
TARGET_HASH160 = TARGET_HASH160_HEX;
// Convert target hash to bytes
for (size_t i = 0; i < 20; i++) {
TARGET_HASH160_RAW[i] = stoul(TARGET_HASH160.substr(i * 2, 2), nullptr, 16);
}
// Set base key from decimal string
BASE_KEY.SetBase10(const_cast<char*>(PRIVATE_KEY_DECIMAL.c_str()));
// Verify base key
Int testKey;
testKey.SetBase10(const_cast<char*>(PRIVATE_KEY_DECIMAL.c_str()));
if (!testKey.IsEqual(&BASE_KEY)) {
cerr << "Base key initialization failed!\n";
return 1;
}
if (BASE_KEY.GetBitLength() > PUZZLE_NUM) {
cerr << "Base key exceeds puzzle bit length!\n";
return 1;
}
// Calculate total combinations
total_combinations = CombinationGenerator::combinations_count(PUZZLE_NUM, FLIP_COUNT);
// Format base key for display
string paddedKey = BASE_KEY.GetBase16();
size_t firstNonZero = paddedKey.find_first_not_of('0');
paddedKey = paddedKey.substr(firstNonZero);
// Add 0x prefix
paddedKey = "0x" + paddedKey;
clearTerminal();
// Print initial header
cout << "=======================================\n";
cout << "== Mutagen Puzzle Solver by Denevron ==\n";
cout << "=======================================\n";
cout << "Starting puzzle: " << PUZZLE_NUM << " (" << PUZZLE_NUM << "-bit)\n";
cout << "Target HASH160: " << TARGET_HASH160.substr(0, 10) << "..." << TARGET_HASH160.substr(TARGET_HASH160.length()-10) << "\n";
cout << "Base Key: " << paddedKey << "\n";
cout << "Flip count: " << FLIP_COUNT << " ";
if (FLIP_COUNT != DEFAULT_FLIP_COUNT) {
cout << "(override, default was " << DEFAULT_FLIP_COUNT << ")";
}
cout << "\n";
cout << "Total combinations: " << total_combinations << "\n";
cout << "Using: " << WORKERS << " threads\n";
g_threadPrivateKeys.resize(WORKERS, "0");
vector<thread> threads;
// Initialize random number generators for each thread with different seeds
vector<mt19937_64> rngs(WORKERS);
random_device rd;
for (int i = 0; i < WORKERS; i++) {
rngs[i].seed(rd() + i); // Different seed for each thread
}
// Distribute work with precise ranges
size_t comb_per_thread = total_combinations / WORKERS;
size_t remainder = total_combinations % WORKERS;
vector<size_t> thread_starts(WORKERS+1);
for(int i = 0; i < WORKERS; i++) {
thread_starts[i] = i * comb_per_thread + min((size_t)i, remainder);
}
thread_starts[WORKERS] = total_combinations;
// Launch threads
for(int i = 0; i < WORKERS; i++) {
threads.emplace_back(worker, &secp, PUZZLE_NUM, FLIP_COUNT, i,
thread_starts[i], thread_starts[i+1], ref(rngs[i]));
}
for (auto& t : threads) {
if (t.joinable()) t.join();
}
if (!results.empty()) {
auto [hex_key, checked, flips] = results.front();
globalElapsedTime = chrono::duration<double>(chrono::high_resolution_clock::now() - tStart).count();
mkeysPerSec = (double)globalComparedCount / globalElapsedTime / 1e6;
string compactHex = hex_key;
size_t firstNonZero = compactHex.find_first_not_of('0');
compactHex = "0x" + compactHex.substr(firstNonZero);
cout << "=======================================\n";
cout << "=========== SOLUTION FOUND ============\n";
cout << "=======================================\n";
cout << "Private key: " << compactHex << "\n";
cout << "Checked " << checked << " combinations\n";
cout << "Bit flips: " << flips << endl;
cout << "Time: " << fixed << setprecision(2) << globalElapsedTime << " seconds ("
<< formatElapsedTime(globalElapsedTime) << ")\n";
cout << "Speed: " << fixed << setprecision(2) << mkeysPerSec << " Mkeys/s\n";
// Save solution
ofstream out("puzzle_" + to_string(PUZZLE_NUM) + "_solution.txt");
if (out) {
out << hex_key;
out.close();
cout << "Solution saved to puzzle_" << PUZZLE_NUM << "_solution.txt\n";
} else {
cerr << "Failed to save solution to file!\n";
}
} else {
globalElapsedTime = chrono::duration<double>(chrono::high_resolution_clock::now() - tStart).count();
mkeysPerSec = (double)globalComparedCount / globalElapsedTime / 1e6;
cout << "\n\nNo solution found after checking all " << total_combinations << " combinations\n";
cout << "Time: " << fixed << setprecision(2) << globalElapsedTime << " seconds ("
<< formatElapsedTime(globalElapsedTime) << ")\n";
cout << "Speed: " << fixed << setprecision(2) << mkeysPerSec << " Mkeys/s\n";
// Verify puzzle parameters
cout << "\nVerification:\n";
cout << "Puzzle: " << PUZZLE_NUM << "\n";
cout << "Base Key: " << paddedKey << "\n";
cout << "Target Hash160: " << TARGET_HASH160 << "\n";
cout << "Flip Count: " << FLIP_COUNT << "\n";
}
return 0;
}
Tested on low puzzles.
For puzzle 68 code still fails (out of memory).