Post
Topic
Board Mining
Re: Potentially faster method for mining on the CPU
by
jlcooke
on 26/08/2013, 12:24:24 UTC
To generate formulas, I do an in-order walk of the tree, and simplify at each level going up... although I'm not sure I fully understand your quesiton.

Quick update, I've been trying out Maple as a potential replacement for Mathematica.  BooleanSimplify chokes on even 8 bits, but doing simplify( (arithmetic expression mod 2, {a*a-a, b*b-b, c*c-c, ....}) does way better.   Maple seems to evaluate these expressions an order of magnitude faster than mathematica, although the resulting equations aren't as compact.  It also consumed a modest 300 megs of memory for 8 bits.  Still learning the maple syntax so things might improve.


OK I think I see now.

I'll PM you a link to my C code for logic reduction in a few mins.  You can compile C right?  And know how to code?  It should be quite a bit faster than Mathmatica or Maple.

It uses de Morgan's rules and some basic reduction rules to optimize the circuit.
 
  • !(AB) = !A + !B,
  • A = A + AB, and
  • A + B = A + !AB

It takes about 4 hours to complete a single 32-bit addition.  The API has all the basic operations you want (AND, OR, XOR, NOT, etc).