Search content
Sort by

Showing 20 of 21 results by algorithm32
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 27/05/2023, 15:03:11 UTC
I still believe that the creator took an hd wallet and changed its first digits with 0 and 1.

these are hd wallet derived by index (bip32), using entropy.


Code:
e5d381edb8f553f370c91f6a923cdc75979ecff930ae282bd025320905420ea1

Decimal 40 : 977979697081
Originl 40 : 1003651412950
Decimal 41 : 2052359601267
Originl 41 : 1458252205147
Decimal 42 : 3106869955017
Originl 42 : 2895374552463
Decimal 43 : 7282462130046
Originl 43 : 7409811047825
Decimal 44 : 16171793044049
Originl 44 : 15404761757071
Decimal 45 : 30222262756334
Originl 45 : 19996463086597
Decimal 46 : 48311258725979
Originl 46 : 51408670348612
Decimal 47 : 109660852173509
Originl 47 : 119666659114170
Decimal 48 : 179176816204806
Originl 48 : 191206974700443
Decimal 49 : 392111997191051
Originl 49 : 409118905032525
Decimal 50 : 678515109351911
Originl 50 : 611140496167764
Decimal 51 : 2250480238048774
Originl 51 : 2058769515153876
Decimal 52 : 4124320801067187
Originl 52 : 4216495639600700
Decimal 53 : 8208656225227312
Originl 53 : 6763683971478124
Decimal 54 : 10037007035528678
Originl 54 : 9974455244496707
Decimal 55 : 27297825258190272
Originl 55 : 30045390491869460
Decimal 56 : 40869168508975649
Originl 56 : 44218742292676575
Decimal 57 : 136174945525590971
Originl 57 : 138245758910846492
Decimal 58 : 184072613703641312
Originl 58 : 199976667976342049
Decimal 59 : 564056197926887240
Originl 59 : 525070384258266191
Decimal 60 : 1081244187136957705
Originl 60 : 1135041350219496382
Decimal 61 : 1929912763579260156
Originl 61 : 1425787542618654982
Decimal 62 : 3518271254274884975
Originl 62 : 3908372542507822062
Decimal 63 : 8083948720161633471
Originl 63 : 8993229949524469768
Decimal 64: 17384508483360700137
Originl 64: 17799667357578236628
Decimal 65: 19861922749538678129
Originl 65: 30568377312064202855

Decimal 66: 67445068265880776550
Decimal 67: 137457421418395676093
Decimal 68: 286437111211651109960
Decimal 69: 447075693134825322345

Decimal 70: 945191106694663864965
Originl 70: 970436974005023690481
Decimal 75: 19674189246275261952889
Originl 75: 22538323240989823823367
Decimal 80: 1108724601635079776656184
Originl 80: 1105520030589234487939456
Decimal 85: 31917442046502054372111202
Originl 85: 21090315766411506144426920
Decimal 90: 694637209103897709156660139
Originl 90: 868012190417726402719548863
Decimal 95: 26490472026017107908115806022
Originl 95: 25525831956644113617013748212
Decimal 100: 822285693119054986152724248383
Originl 100: 868221233689326498340379183142
Decimal 105 : 35943734164521653175559448479698
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1201684459695171689588662022885868
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464138578449980575508163698464999
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 26325957757707883673459830602524036421

1b2874d390f8969374c10bcd748b28e838766d19ab7f6381dcc03b7ed3d3550a

Decimal 40 : 1026059307402
Originl 40 : 1003651412950
Decimal 41 : 1899176173046
Originl 41 : 1458252205147
Decimal 42 : 2852136379841
Originl 42 : 2895374552463
Decimal 43 : 6981485272054
Originl 43 : 7409811047825
Decimal 44 : 15918960320405
Originl 44 : 15404761757071
Decimal 45 : 25333066528979
Originl 45 : 19996463086597
Decimal 46 : 42325463761508
Originl 46 : 51408670348612
Decimal 47 : 113070844648841
Originl 47 : 119666659114170
Decimal 48 : 184714153191452
Originl 48 : 191206974700443
Decimal 49 : 434421908281171
Originl 49 : 409118905032525
Decimal 50 : 649725232503989
Originl 50 : 611140496167764
Decimal 51 : 2241146440133844
Originl 51 : 2058769515153876
Decimal 52 : 4217104742574046
Originl 52 : 4216495639600700
Decimal 53 : 7730490185274568
Originl 53 : 6763683971478124
Decimal 54 : 9991918450490607
Originl 54 : 9974455244496707
Decimal 55 : 28882199237142670
Originl 55 : 30045390491869460
Decimal 56 : 43554225067481316
Originl 56 : 44218742292676575
Decimal 57 : 136549970379171791
Originl 57 : 138245758910846492
Decimal 58 : 163930157293369237
Originl 58 : 199976667976342049
Decimal 59 : 543463653102739562
Originl 59 : 525070384258266191
Decimal 60 : 1082367208662670998
Originl 60 : 1135041350219496382
Decimal 61 : 1394043224163252626
Originl 61 : 1425787542618654982
Decimal 62 : 3507814292624007678
Originl 62 : 3908372542507822062
Decimal 63 : 8101035179523160825
Originl 63 : 8993229949524469768
Decimal 64: 17350710852631299058
Originl 64: 17799667357578236628
Decimal 65: 26632565442979340296
Originl 65: 30568377312064202855

Decimal 66: 55777628017261072735
Decimal 67: 144205956960704889846
Decimal 68: 278973621366769893739
Decimal 69: 429053067029108090534

Decimal 70: 1064748105576175142525
Originl 70: 970436974005023690481
Decimal 75: 19588682910454500820419
Originl 75: 22538323240989823823367
Decimal 80: 1115438771939442133472545
Originl 80: 1105520030589234487939456
Decimal 85: 37826436273117852361500655
Originl 85: 21090315766411506144426920
Decimal 90: 874954669843566662929381575
Originl 90: 868012190417726402719548863
Decimal 95: 26898819133352744797013476095
Originl 95: 25525831956644113617013748212
Decimal 100: 813267227977084320488869020032
Originl 100: 868221233689326498340379183142
Decimal 105 : 27310490583716560401316604797577
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1112636214097370415620882259280476
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464160775701377405657395676782135
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 36529372001406570233465073647900963404

5c54c11d826c968ce4ac0237617d29f1ef1659d72350f1e9729857e93c6e6efd

Decimal 40 : 1011579362522
Originl 40 : 1003651412950
Decimal 41 : 1455678993341
Originl 41 : 1458252205147
Decimal 42 : 2440580329425
Originl 42 : 2895374552463
Decimal 43 : 7087202124370
Originl 43 : 7409811047825
Decimal 44 : 15972560065324
Originl 44 : 15404761757071
Decimal 45 : 26298376893398
Originl 45 : 19996463086597
Decimal 46 : 35411592605184
Originl 46 : 51408670348612
Decimal 47 : 112652042205850
Originl 47 : 119666659114170
Decimal 48 : 190340547001034
Originl 48 : 191206974700443
Decimal 49 : 545025735446859
Originl 49 : 409118905032525
Decimal 50 : 613573809327004
Originl 50 : 611140496167764
Decimal 51 : 1989709614867022
Originl 51 : 2058769515153876
Decimal 52 : 4092187443089040
Originl 52 : 4216495639600700
Decimal 53 : 8557315387263761
Originl 53 : 6763683971478124
Decimal 54 : 10119760124695031
Originl 54 : 9974455244496707
Decimal 55 : 29677537313540194
Originl 55 : 30045390491869460
Decimal 56 : 43491204184736917
Originl 56 : 44218742292676575
Decimal 57 : 135509940203340480
Originl 57 : 138245758910846492
Decimal 58 : 157652596239395545
Originl 58 : 199976667976342049
Decimal 59 : 507264573525920798
Originl 59 : 525070384258266191
Decimal 60 : 1137503572977911164
Originl 60 : 1135041350219496382
Decimal 61 : 1424783221576542804
Originl 61 : 1425787542618654982
Decimal 62 : 3562978959192574354
Originl 62 : 3908372542507822062
Decimal 63 : 8410271439449035422
Originl 63 : 8993229949524469768
Decimal 64: 17815936283188530244
Originl 64: 17799667357578236628
Decimal 65: 32115478594996894955
Originl 65: 30568377312064202855

Decimal 66: 58349009757768569989
Decimal 67: 130204685587235470856
Decimal 68: 279406401709782375673
Decimal 69: 345583470721148627090

Decimal 70: 907934422460677069481
Originl 70: 970436974005023690481
Decimal 75: 20156835384401749284870
Originl 75: 22538323240989823823367
Decimal 80: 1106340151270370051957501
Originl 80: 1105520030589234487939456
Decimal 85: 24861976775658906662087655
Originl 85: 21090315766411506144426920
Decimal 90: 709018032341422537082025482
Originl 90: 868012190417726402719548863
Decimal 95: 26228640630722984697341723177
Originl 95: 25525831956644113617013748212
Decimal 100: 848739690768868690973942034489
Originl 100: 868221233689326498340379183142
Decimal 105 : 33441351319931885587870944351502
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1187905825147982324778544823234997
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464163680378139435713589059192221
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 29594712971868043164978076280134769500

510b181a24181c5af7a85f72babbd137dcc55a40a366163c9063b298c6b8e62c


Decimal 40 : 1022861308136
Originl 40 : 1003651412950
Decimal 41 : 2182788155321
Originl 41 : 1458252205147
Decimal 42 : 3017392923364
Originl 42 : 2895374552463
Decimal 43 : 7523834754022
Originl 43 : 7409811047825
Decimal 44 : 15565325667705
Originl 44 : 15404761757071
Decimal 45 : 30943942381969
Originl 45 : 19996463086597
Decimal 46 : 45623247882804
Originl 46 : 51408670348612
Decimal 47 : 122219194718820
Originl 47 : 119666659114170
Decimal 48 : 186735428540609
Originl 48 : 191206974700443
Decimal 49 : 303656502742955
Originl 49 : 409118905032525
Decimal 50 : 837792237349674
Originl 50 : 611140496167764
Decimal 51 : 2045943707552965
Originl 51 : 2058769515153876
Decimal 52 : 4035646115366477
Originl 52 : 4216495639600700
Decimal 53 : 5829839677245915
Originl 53 : 6763683971478124
Decimal 54 : 9861326603821412
Originl 54 : 9974455244496707
Decimal 55 : 30961137716656210
Originl 55 : 30045390491869460
Decimal 56 : 44058591843261110
Originl 56 : 44218742292676575
Decimal 57 : 137946358192622230
Originl 57 : 138245758910846492
Decimal 58 : 204344927628544781
Originl 58 : 199976667976342049
Decimal 59 : 553376976991983999
Originl 59 : 525070384258266191
Decimal 60 : 1099414816755375090
Originl 60 : 1135041350219496382
Decimal 61 : 2022603879958453854
Originl 61 : 1425787542618654982
Decimal 62 : 3994656845738630787
Originl 62 : 3908372542507822062
Decimal 63 : 9035183789572089728
Originl 63 : 8993229949524469768
Decimal 64: 17983908921992633881
Originl 64: 17799667357578236628
Decimal 65: 24518884106297278064
Originl 65: 30568377312064202855

Decimal 66: 66243844910388939155
Decimal 67: 140742279043241744190
Decimal 68: 277810510049521332631
Decimal 69: 499636856634747726198

Decimal 70: 1125256057830741103452
Originl 70: 970436974005023690481
Decimal 75: 22323433350859378688746
Originl 75: 22538323240989823823367
Decimal 80: 1127470479567941975227921
Originl 80: 1105520030589234487939456
Decimal 85: 30614339297396594948455403
Originl 85: 21090315766411506144426920
Decimal 90: 694654510208460746786316532
Originl 90: 868012190417726402719548863
Decimal 95: 25590093339528078085432682046
Originl 95: 25525831956644113617013748212
Decimal 100: 846878551860461864482554313446
Originl 100: 868221233689326498340379183142
Decimal 105 : 37877125433177041754199623781303
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1242934490553119369554705096168898
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464174943582234087365499601998948
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 32465246135956244441613925541297805874

4785881bb10315a24cea523b35cc3064af332b517b81e0e67e2399b467c1f021


Decimal 40 : 1002683396504
Originl 40 : 1003651412950
Decimal 41 : 1743979433536
Originl 41 : 1458252205147
Decimal 42 : 3068000319590
Originl 42 : 2895374552463
Decimal 43 : 6816852948583
Originl 43 : 7409811047825
Decimal 44 : 15814338409765
Originl 44 : 15404761757071
Decimal 45 : 24177610917086
Originl 45 : 19996463086597
Decimal 46 : 45620975946778
Originl 46 : 51408670348612
Decimal 47 : 121535672383917
Originl 47 : 119666659114170
Decimal 48 : 180122061897355
Originl 48 : 191206974700443
Decimal 49 : 303701300012527
Originl 49 : 409118905032525
Decimal 50 : 757599732273205
Originl 50 : 611140496167764
Decimal 51 : 2165488499169914
Originl 51 : 2058769515153876
Decimal 52 : 3961189427600435
Originl 52 : 4216495639600700
Decimal 53 : 4930827109741340
Originl 53 : 6763683971478124
Decimal 54 : 10082216574791801
Originl 54 : 9974455244496707
Decimal 55 : 31078269948201422
Originl 55 : 30045390491869460
Decimal 56 : 42114869023657248
Originl 56 : 44218742292676575
Decimal 57 : 139178355851948485
Originl 57 : 138245758910846492
Decimal 58 : 194016669553023977
Originl 58 : 199976667976342049
Decimal 59 : 514690405962746359
Originl 59 : 525070384258266191
Decimal 60 : 1132130085240701464
Originl 60 : 1135041350219496382
Decimal 61 : 1732747890237609172
Originl 61 : 1425787542618654982
Decimal 62 : 4013350056521058862
Originl 62 : 3908372542507822062
Decimal 63 : 8780393378081938441
Originl 63 : 8993229949524469768
Decimal 64: 18091224072847952102
Originl 64: 17799667357578236628
Decimal 65: 35108389902538823501
Originl 65: 30568377312064202855

Decimal 66: 68801860250732645829
Decimal 67: 132060472083810734584
Decimal 68: 290278771667093096788
Decimal 69: 380445959038025896716

Decimal 70: 935802383858600404758
Originl 70: 970436974005023690481
Decimal 75: 22191904457194983916571
Originl 75: 22538323240989823823367
Decimal 80: 1113631903272660148227597
Originl 80: 1105520030589234487939456
Decimal 85: 34325921026506828030046769
Originl 85: 21090315766411506144426920
Decimal 90: 784992275525476052880990176
Originl 90: 868012190417726402719548863
Decimal 95: 27936213541365023355997204922
Originl 95: 25525831956644113617013748212
Decimal 100: 823932721137451462625403107782
Originl 100: 868221233689326498340379183142
Decimal 105 : 28300514799476233104870157590230
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1138292878906895300695225629525814
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464142323707562418900499443407373
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 21782321271736353583138000543298349712

404534477ee3e63c3d04583be14ffcfc855bfca2d9fc366203540520541710b6


Decimal 40 : 1016623072870
Originl 40 : 1003651412950
Decimal 41 : 1990208506948
Originl 41 : 1458252205147
Decimal 42 : 3064082235808
Originl 42 : 2895374552463
Decimal 43 : 7127571140295
Originl 43 : 7409811047825
Decimal 44 : 15633124589230
Originl 44 : 15404761757071
Decimal 45 : 21979770232045
Originl 45 : 19996463086597
Decimal 46 : 45099397693713
Originl 46 : 51408670348612
Decimal 47 : 111902427231785
Originl 47 : 119666659114170
Decimal 48 : 191646931256918
Originl 48 : 191206974700443
Decimal 49 : 499272614105001
Originl 49 : 409118905032525
Decimal 50 : 788021102815773
Originl 50 : 611140496167764
Decimal 51 : 2057288969326442
Originl 51 : 2058769515153876
Decimal 52 : 4179003949236963
Originl 52 : 4216495639600700
Decimal 53 : 8848929061137730
Originl 53 : 6763683971478124
Decimal 54 : 10072355699854093
Originl 54 : 9974455244496707
Decimal 55 : 27849388378910206
Originl 55 : 30045390491869460
Decimal 56 : 42883583102541619
Originl 56 : 44218742292676575
Decimal 57 : 137944537309002243
Originl 57 : 138245758910846492
Decimal 58 : 215359636422626982
Originl 58 : 199976667976342049
Decimal 59 : 520855190275166985
Originl 59 : 525070384258266191
Decimal 60 : 1086041512744645727
Originl 60 : 1135041350219496382
Decimal 61 : 1678285921033086812
Originl 61 : 1425787542618654982
Decimal 62 : 4123156801432787748
Originl 62 : 3908372542507822062
Decimal 63 : 9164821948722150962
Originl 63 : 8993229949524469768
Decimal 64: 17679926091979328222
Originl 64: 17799667357578236628
Decimal 65: 30396595104401681457
Originl 65: 30568377312064202855

Decimal 66: 70799153265062138675
Decimal 67: 139560925780823810171
Decimal 68: 288672377512307074658
Decimal 69: 442441104103503386197

Decimal 70: 938264520094397232733
Originl 70: 970436974005023690481
Decimal 75: 20614511754291726719558
Originl 75: 22538323240989823823367
Decimal 80: 1065227862663462387935501
Originl 80: 1105520030589234487939456
Decimal 85: 26238478038356064832209113
Originl 85: 21090315766411506144426920
Decimal 90: 791887264007557544076610151
Originl 90: 868012190417726402719548863
Decimal 95: 24964593472566015995675590477
Originl 95: 25525831956644113617013748212
Decimal 100: 819037219487095384969979972618
Originl 100: 868221233689326498340379183142
Decimal 105 : 21395451610421203288207152916600
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1045935617151871304001547229601830
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464142135419068307058894412453533
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 21669897610153632702572000068499028894

4a717fb983cc1b891e57cd194b43a01a46bccbfcd56510d9d65b38cad40c1023

Decimal 40 : 1013182891166
Originl 40 : 1003651412950
Decimal 41 : 1227466321836
Originl 41 : 1458252205147
Decimal 42 : 3205457514061
Originl 42 : 2895374552463
Decimal 43 : 7301758546662
Originl 43 : 7409811047825
Decimal 44 : 16113287320156
Originl 44 : 15404761757071
Decimal 45 : 29997600580829
Originl 45 : 19996463086597
Decimal 46 : 51277380647395
Originl 46 : 51408670348612
Decimal 47 : 118405983256937
Originl 47 : 119666659114170
Decimal 48 : 178187628215823
Originl 48 : 191206974700443
Decimal 49 : 286918535164536
Originl 49 : 409118905032525
Decimal 50 : 602739232111282
Originl 50 : 611140496167764
Decimal 51 : 2105175366668606
Originl 51 : 2058769515153876
Decimal 52 : 4166998798287359
Originl 52 : 4216495639600700
Decimal 53 : 7317169184862681
Originl 53 : 6763683971478124
Decimal 54 : 10123296611084730
Originl 54 : 9974455244496707
Decimal 55 : 27827967303791468
Originl 55 : 30045390491869460
Decimal 56 : 43545521662377193
Originl 56 : 44218742292676575
Decimal 57 : 135172336983368766
Originl 57 : 138245758910846492
Decimal 58 : 148908847714612282
Originl 58 : 199976667976342049
Decimal 59 : 573659816681999945
Originl 59 : 525070384258266191
Decimal 60 : 1138646522509814636
Originl 60 : 1135041350219496382
Decimal 61 : 1322583121415425142
Originl 61 : 1425787542618654982
Decimal 62 : 3845663923948479407
Originl 62 : 3908372542507822062
Decimal 63 : 8288553965716020256
Originl 63 : 8993229949524469768
Decimal 64: 18135975258797669079
Originl 64: 17799667357578236628
Decimal 65: 34186014181440741689
Originl 65: 30568377312064202855

Decimal 66: 64328320128101358211
Decimal 67: 142948068795294050249
Decimal 68: 289044659191822201392
Decimal 69: 503955508713967727309

Decimal 70: 1075178371149320153568
Originl 70: 970436974005023690481
Decimal 75: 19459924017807225083997
Originl 75: 22538323240989823823367
Decimal 80: 1073482977281312162903118
Originl 80: 1105520030589234487939456
Decimal 85: 30509825835993751131649486
Originl 85: 21090315766411506144426920
Decimal 90: 681191614540852902460129661
Originl 90: 868012190417726402719548863
Decimal 95: 27166985228138770921273969214
Originl 95: 25525831956644113617013748212
Decimal 100: 792287841487413921119231652914
Originl 100: 868221233689326498340379183142
Decimal 105 : 40161430293565486792569096108500
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1026028250258159238548602939904549
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464120049564834525387303210799024
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 26248984786357470522786725194463015964


4815ca0148fc1149d60c5c9c148feaa83749d6e136a55e5653cb87b13760b392

Decimal 40 : 981935629997
Originl 40 : 1003651412950
Decimal 41 : 1168442728461
Originl 41 : 1458252205147
Decimal 42 : 2874023270470
Originl 42 : 2895374552463
Decimal 43 : 7525460544797
Originl 43 : 7409811047825
Decimal 44 : 15967942865255
Originl 44 : 15404761757071
Decimal 45 : 33984051984820
Originl 45 : 19996463086597
Decimal 46 : 44923091103445
Originl 46 : 51408670348612
Decimal 47 : 118997144781003
Originl 47 : 119666659114170
Decimal 48 : 180693682404270
Originl 48 : 191206974700443
Decimal 49 : 476844160439403
Originl 49 : 409118905032525
Decimal 50 : 609230655437091
Originl 50 : 611140496167764
Decimal 51 : 2195026387333818
Originl 51 : 2058769515153876
Decimal 52 : 4218498531246056
Originl 52 : 4216495639600700
Decimal 53 : 5756523839934106
Originl 53 : 6763683971478124
Decimal 54 : 10060635432276352
Originl 54 : 9974455244496707
Decimal 55 : 31342456582340413
Originl 55 : 30045390491869460
Decimal 56 : 43815288285854697
Originl 56 : 44218742292676575
Decimal 57 : 138304557958906519
Originl 57 : 138245758910846492
Decimal 58 : 174593929325177836
Originl 58 : 199976667976342049
Decimal 59 : 527843427256618344
Originl 59 : 525070384258266191
Decimal 60 : 1102279376410286112
Originl 60 : 1135041350219496382
Decimal 61 : 2209978515796561781
Originl 61 : 1425787542618654982
Decimal 62 : 4257898319816648529
Originl 62 : 3908372542507822062
Decimal 63 : 9060154494228493997
Originl 63 : 8993229949524469768
Decimal 64: 18250989641186493566
Originl 64: 17799667357578236628
Decimal 65: 35061005960328002070
Originl 65: 30568377312064202855

Decimal 66: 56074311542044704047
Decimal 67: 143797560330881965144
Decimal 68: 279825952335358419043
Decimal 69: 330490558576624420379

Decimal 70: 1095454165898941724772
Originl 70: 970436974005023690481
Decimal 75: 19772205730398656028166
Originl 75: 22538323240989823823367
Decimal 80: 1120176612798720302826786
Originl 80: 1105520030589234487939456
Decimal 85: 20591018294699674743838347
Originl 85: 21090315766411506144426920
Decimal 90: 872497861570524286253499760
Originl 90: 868012190417726402719548863
Decimal 95: 27809719097940446973677147208
Originl 95: 25525831956644113617013748212
Decimal 100: 809345998179306287944674631256
Originl 100: 868221233689326498340379183142
Decimal 105 : 26647074294050870553835192557587
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1245411636847228782356503530773251
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464175887922328052310347311636937
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 42229115559970624420425635596542086106

4de503686fc2501ae6f6d7437ff604cf19895bf4adf2ced49a0ad4e5ca32e714

Decimal 40 : 1009710761164
Originl 40 : 1003651412950
Decimal 41 : 2184406417482
Originl 41 : 1458252205147
Decimal 42 : 2832819983533
Originl 42 : 2895374552463
Decimal 43 : 7591183171669
Originl 43 : 7409811047825
Decimal 44 : 15577575711578
Originl 44 : 15404761757071
Decimal 45 : 28416914341529
Originl 45 : 19996463086597
Decimal 46 : 46894911836479
Originl 46 : 51408670348612
Decimal 47 : 122137242493141
Originl 47 : 119666659114170
Decimal 48 : 177972075707812
Originl 48 : 191206974700443
Decimal 49 : 372433971878020
Originl 49 : 409118905032525
Decimal 50 : 732938582915003
Originl 50 : 611140496167764
Decimal 51 : 1991254768739836
Originl 51 : 2058769515153876
Decimal 52 : 4040604537588114
Originl 52 : 4216495639600700
Decimal 53 : 7959003446020642
Originl 53 : 6763683971478124
Decimal 54 : 9939397801338907
Originl 54 : 9974455244496707
Decimal 55 : 29812947403665786
Originl 55 : 30045390491869460
Decimal 56 : 44523569609414019
Originl 56 : 44218742292676575
Decimal 57 : 136682996876157817
Originl 57 : 138245758910846492
Decimal 58 : 208167375772471592
Originl 58 : 199976667976342049
Decimal 59 : 534162396548987438
Originl 59 : 525070384258266191
Decimal 60 : 1125860206576522254
Originl 60 : 1135041350219496382
Decimal 61 : 2155962000161641928
Originl 61 : 1425787542618654982
Decimal 62 : 4396467113737560276
Originl 62 : 3908372542507822062
Decimal 63 : 8842951010980404559
Originl 63 : 8993229949524469768
Decimal 64: 18283903971953962948
Originl 64: 17799667357578236628
Decimal 65: 18848284089270798930
Originl 65: 30568377312064202855

Decimal 66: 69125019291873801266
Decimal 67: 143883402736735980234
Decimal 68: 283146043350566343937
Decimal 69: 343978332699385853151

Decimal 70: 1141336195958222818149
Originl 70: 970436974005023690481
Decimal 75: 22792612561906946280429
Originl 75: 22538323240989823823367
Decimal 80: 1082683503717616627776171
Originl 80: 1105520030589234487939456
Decimal 85: 23793166958558936708275101
Originl 85: 21090315766411506144426920
Decimal 90: 885553106156801657922160542
Originl 90: 868012190417726402719548863
Decimal 95: 26718630726018753428138460887
Originl 95: 25525831956644113617013748212
Decimal 100: 820812038246159146503138227545
Originl 100: 868221233689326498340379183142
Decimal 105 : 26664083060113467501728206070379
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1022000133424144905900273751622491
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464148630745348518930638975654357
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 28712734736846957891112337449554057874


437bea1f00db4d9c45b39efdc4009564b1410be6b0c5de7d9826d076f4e9bb29

Decimal 40 : 1021270402385
Originl 40 : 1003651412950
Decimal 41 : 1454302262766
Originl 41 : 1458252205147
Decimal 42 : 2797790775683
Originl 42 : 2895374552463
Decimal 43 : 7327308203911
Originl 43 : 7409811047825
Decimal 44 : 15938827227602
Originl 44 : 15404761757071
Decimal 45 : 31135639318294
Originl 45 : 19996463086597
Decimal 46 : 40435725189882
Originl 46 : 51408670348612
Decimal 47 : 116801044361556
Originl 47 : 119666659114170
Decimal 48 : 193484331864864
Originl 48 : 191206974700443
Decimal 49 : 422672593953508
Originl 49 : 409118905032525
Decimal 50 : 793905206716301
Originl 50 : 611140496167764
Decimal 51 : 2106951788498298
Originl 51 : 2058769515153876
Decimal 52 : 3947632834950667
Originl 52 : 4216495639600700
Decimal 53 : 7921682934525161
Originl 53 : 6763683971478124
Decimal 54 : 9934602644258184
Originl 54 : 9974455244496707
Decimal 55 : 31098019501173173
Originl 55 : 30045390491869460
Decimal 56 : 43161510874496851
Originl 56 : 44218742292676575
Decimal 57 : 139161239670895602
Originl 57 : 138245758910846492
Decimal 58 : 210368345597035435
Originl 58 : 199976667976342049
Decimal 59 : 563357326362418487
Originl 59 : 525070384258266191
Decimal 60 : 1083059589115783256
Originl 60 : 1135041350219496382
Decimal 61 : 1893194376408167345
Originl 61 : 1425787542618654982
Decimal 62 : 4486948858936504947
Originl 62 : 3908372542507822062
Decimal 63 : 9200963306427239271
Originl 63 : 8993229949524469768
Decimal 64: 18343005508527705154
Originl 64: 17799667357578236628
Decimal 65: 29369990245496692875
Originl 65: 30568377312064202855

Decimal 66: 66937000643619908200
Decimal 67: 129626059564620301081
Decimal 68: 294285239023207577245
Decimal 69: 335940095839311705881

Decimal 70: 1177435970035880923588
Originl 70: 970436974005023690481
Decimal 75: 20121300396594716357477
Originl 75: 22538323240989823823367
Decimal 80: 1064182713762126063148584
Originl 80: 1105520030589234487939456
Decimal 85: 28014877436320650601129569
Originl 85: 21090315766411506144426920
Decimal 90: 727640289268321413300393508
Originl 90: 868012190417726402719548863
Decimal 95: 28491694755627019787783129423
Originl 95: 25525831956644113617013748212
Decimal 100: 809858470659734769394411259135
Originl 100: 868221233689326498340379183142
Decimal 105 : 26677722125914796929545291924408
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1079666033200529944190523928230330
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464177936013778127719801113461778
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 41513666441932782592204478977873612941


4911a7fb2405150c59c0cf9de28fec1c1138c97ac7a819ac8c68685ee52e0fcc

Decimal 40 : 998227614738
Originl 40 : 1003651412950
Decimal 41 : 1842683637149
Originl 41 : 1458252205147
Decimal 42 : 2991832129245
Originl 42 : 2895374552463
Decimal 43 : 7347912335212
Originl 43 : 7409811047825
Decimal 44 : 16058433862593
Originl 44 : 15404761757071
Decimal 45 : 23217810683089
Originl 45 : 19996463086597
Decimal 46 : 36770111331039
Originl 46 : 51408670348612
Decimal 47 : 110711877375605
Originl 47 : 119666659114170
Decimal 48 : 179700993643192
Originl 48 : 191206974700443
Decimal 49 : 444078894882139
Originl 49 : 409118905032525
Decimal 50 : 707082115720367
Originl 50 : 611140496167764
Decimal 51 : 2052699759102561
Originl 51 : 2058769515153876
Decimal 52 : 4067774763944542
Originl 52 : 4216495639600700
Decimal 53 : 4515601674989528
Originl 53 : 6763683971478124
Decimal 54 : 10058081721577226
Originl 54 : 9974455244496707
Decimal 55 : 29059968528637600
Originl 55 : 30045390491869460
Decimal 56 : 43899023802859837
Originl 56 : 44218742292676575
Decimal 57 : 139055297046100820
Originl 57 : 138245758910846492
Decimal 58 : 157998236052447950
Originl 58 : 199976667976342049
Decimal 59 : 522731117812465470
Originl 59 : 525070384258266191
Decimal 60 : 1121411713744704294
Originl 60 : 1135041350219496382
Decimal 61 : 2302900939957746580
Originl 61 : 1425787542618654982
Decimal 62 : 3519129454554409569
Originl 62 : 3908372542507822062
Decimal 63 : 8275480145192314966
Originl 63 : 8993229949524469768
Decimal 64: 17734204782908422678
Originl 64: 17799667357578236628
Decimal 65: 35933666766860851351
Originl 65: 30568377312064202855

Decimal 66: 56798896826326744624
Decimal 67: 137566541376127976039
Decimal 68: 283473655283560876844
Decimal 69: 507842240849496208729

Decimal 70: 1001717454824013151393
Originl 70: 970436974005023690481
Decimal 75: 21953846951706520570109
Originl 75: 22538323240989823823367
Decimal 80: 1086869698331204563692090
Originl 80: 1105520030589234487939456
Decimal 85: 30194411861468923616841306
Originl 85: 21090315766411506144426920
Decimal 90: 830945373300942891678440921
Originl 90: 868012190417726402719548863
Decimal 95: 26586515910485111147276138732
Originl 95: 25525831956644113617013748212
Decimal 100: 823264617529135840885375464546
Originl 100: 868221233689326498340379183142
Decimal 105 : 35536871003888935342585226560712
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1008183739879369560040461192411530
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464190843176435491526649982235964
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 28248131068387525187416569989957567659

4064cc97b9bc4855b9a0b46a7c7f067c5fc954eacf2754bc3c46adbf3ffc944e

Decimal 40 : 992151844165
Originl 40 : 1003651412950
Decimal 41 : 1659683355185
Originl 41 : 1458252205147
Decimal 42 : 3038651942049
Originl 42 : 2895374552463
Decimal 43 : 7221519599740
Originl 43 : 7409811047825
Decimal 44 : 16492121232203
Originl 44 : 15404761757071
Decimal 45 : 27747227288014
Originl 45 : 19996463086597
Decimal 46 : 43272772811186
Originl 46 : 51408670348612
Decimal 47 : 108141679889513
Originl 47 : 119666659114170
Decimal 48 : 176902790800313
Originl 48 : 191206974700443
Decimal 49 : 302219565207190
Originl 49 : 409118905032525
Decimal 50 : 673153803466928
Originl 50 : 611140496167764
Decimal 51 : 2138238733143602
Originl 51 : 2058769515153876
Decimal 52 : 4071815187782075
Originl 52 : 4216495639600700
Decimal 53 : 8670829181324502
Originl 53 : 6763683971478124
Decimal 54 : 9908369196282064
Originl 54 : 9974455244496707
Decimal 55 : 27704906111148275
Originl 55 : 30045390491869460
Decimal 56 : 40676263271253658
Originl 56 : 44218742292676575
Decimal 57 : 139486919766719128
Originl 57 : 138245758910846492
Decimal 58 : 203649498209792612
Originl 58 : 199976667976342049
Decimal 59 : 574471443912089426
Originl 59 : 525070384258266191
Decimal 60 : 1125011405476284913
Originl 60 : 1135041350219496382
Decimal 61 : 2193100317636220437
Originl 61 : 1425787542618654982
Decimal 62 : 4391123481071677826
Originl 62 : 3908372542507822062
Decimal 63 : 8620148023328231198
Originl 63 : 8993229949524469768
Decimal 64: 17694350059614660344
Originl 64: 17799667357578236628
Decimal 65: 33035597084781720641
Originl 65: 30568377312064202855

Decimal 66: 73242354514104443969
Decimal 67: 146065574551729747447
Decimal 68: 282786119179039159316
Decimal 69: 338631251662760299185

Decimal 70: 1006975751616686599752
Originl 70: 970436974005023690481
Decimal 75: 23351111675958266543737
Originl 75: 22538323240989823823367
Decimal 80: 1086697233041445780883803
Originl 80: 1105520030589234487939456
Decimal 85: 31460696979517324440798917
Originl 85: 21090315766411506144426920
Decimal 90: 809862660664777215820298147
Originl 90: 868012190417726402719548863
Decimal 95: 28753976543024674088233925162
Originl 95: 25525831956644113617013748212
Decimal 100: 802882460949110237650477584697
Originl 100: 868221233689326498340379183142
Decimal 105 : 37816842282381642645463198847115
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1050339606230975348431067301806768
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464182014850228852544082558259859
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 22562213482442359014491275498123496949


4489451cd87229b335bb445fc8cc3b807da6e502587190736342b301c5090ef6

Decimal 40 : 985048187180
Originl 40 : 1003651412950
Decimal 41 : 2056466225279
Originl 41 : 1458252205147
Decimal 42 : 3176605295266
Originl 42 : 2895374552463
Decimal 43 : 6625854328803
Originl 43 : 7409811047825
Decimal 44 : 16175156304273
Originl 44 : 15404761757071
Decimal 45 : 32326714891578
Originl 45 : 19996463086597
Decimal 46 : 47968337264108
Originl 46 : 51408670348612
Decimal 47 : 114408963248593
Originl 47 : 119666659114170
Decimal 48 : 178469096203051
Originl 48 : 191206974700443
Decimal 49 : 475059042090705
Originl 49 : 409118905032525
Decimal 50 : 638530768032344
Originl 50 : 611140496167764
Decimal 51 : 2157810427282720
Originl 51 : 2058769515153876
Decimal 52 : 3972420357895017
Originl 52 : 4216495639600700
Decimal 53 : 5659679852961989
Originl 53 : 6763683971478124
Decimal 54 : 9901014987898840
Originl 54 : 9974455244496707
Decimal 55 : 29710557880604822
Originl 55 : 30045390491869460
Decimal 56 : 41166701274431973
Originl 56 : 44218742292676575
Decimal 57 : 136346730314685620
Originl 57 : 138245758910846492
Decimal 58 : 160983500177905249
Originl 58 : 199976667976342049
Decimal 59 : 563345071701477795
Originl 59 : 525070384258266191
Decimal 60 : 1114060559990505563
Originl 60 : 1135041350219496382
Decimal 61 : 2050583687211646499
Originl 61 : 1425787542618654982
Decimal 62 : 3728233700419648329
Originl 62 : 3908372542507822062
Decimal 63 : 8154657223451668133
Originl 63 : 8993229949524469768
Decimal 64: 17843562667112719474
Originl 64: 17799667357578236628
Decimal 65: 22644179233578977250
Originl 65: 30568377312064202855

Decimal 66: 62071981027498383331
Decimal 67: 143175480009781288501
Decimal 68: 282608513564536509676
Decimal 69: 305383548306601791163

Decimal 70: 1087136966583814090417
Originl 70: 970436974005023690481
Decimal 75: 23179388094106091471950
Originl 75: 22538323240989823823367
Decimal 80: 1105980148957827144963920
Originl 80: 1105520030589234487939456
Decimal 85: 20913475654177597057008586
Originl 85: 21090315766411506144426920
Decimal 90: 743005675945214898302291472
Originl 90: 868012190417726402719548863
Decimal 95: 24868361629599177833509327270
Originl 95: 25525831956644113617013748212
Decimal 100: 819167115511722297054392239946
Originl 100: 868221233689326498340379183142
Decimal 105 : 26960805793741687774611625590608
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 985565429847614875178408214523220
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464174365214585698377229595626340
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 30198764318308090077478703426267790547

446fab73b96d3f7cfeb0e84a4eb56a975d55279035bb61e9b04b285f059f2ef1

Decimal 40 : 1029242150053
Originl 40 : 1003651412950
Decimal 41 : 1529768539485
Originl 41 : 1458252205147
Decimal 42 : 2225104491339
Originl 42 : 2895374552463
Decimal 43 : 7289091517952
Originl 43 : 7409811047825
Decimal 44 : 16367240467757
Originl 44 : 15404761757071
Decimal 45 : 18226354590042
Originl 45 : 19996463086597
Decimal 46 : 41472044278678
Originl 46 : 51408670348612
Decimal 47 : 115797914700082
Originl 47 : 119666659114170
Decimal 48 : 182051212287212
Originl 48 : 191206974700443
Decimal 49 : 401310811603773
Originl 49 : 409118905032525
Decimal 50 : 800977909663196
Originl 50 : 611140496167764
Decimal 51 : 2092332087049220
Originl 51 : 2058769515153876
Decimal 52 : 4146376083203351
Originl 52 : 4216495639600700
Decimal 53 : 6351897437628798
Originl 53 : 6763683971478124
Decimal 54 : 10054688021586138
Originl 54 : 9974455244496707
Decimal 55 : 28977400948551533
Originl 55 : 30045390491869460
Decimal 56 : 43917774933918550
Originl 56 : 44218742292676575
Decimal 57 : 135815636633439692
Originl 57 : 138245758910846492
Decimal 58 : 164529089119529933
Originl 58 : 199976667976342049
Decimal 59 : 567456502024078438
Originl 59 : 525070384258266191
Decimal 60 : 1098481331868682300
Originl 60 : 1135041350219496382
Decimal 61 : 1435788307145965778
Originl 61 : 1425787542618654982
Decimal 62 : 4335971063099354977
Originl 62 : 3908372542507822062
Decimal 63 : 8240031548973433035
Originl 63 : 8993229949524469768
Decimal 64: 17776952870054116954
Originl 64: 17799667357578236628
Decimal 65: 28181375853511682160
Originl 65: 30568377312064202855

Decimal 66: 68077479672467718327
Decimal 67: 138645954081964293355
Decimal 68: 283463118507985519357
Decimal 69: 535377751950064570047

Decimal 70: 1123607749925749084214
Originl 70: 970436974005023690481
Decimal 75: 19917893595548453504250
Originl 75: 22538323240989823823367
Decimal 80: 1062758204913911777581226
Originl 80: 1105520030589234487939456
Decimal 85: 32991890143675323625228314
Originl 85: 21090315766411506144426920
Decimal 90: 786451077479472402300821130
Originl 90: 868012190417726402719548863
Decimal 95: 25682961926242411698323399044
Originl 95: 25525831956644113617013748212
Decimal 100: 865386870671809614527971744611
Originl 100: 868221233689326498340379183142
Decimal 105 : 28778685273128748479941130466025
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1061176370102650211366269930145553
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464139777664450890915901198966310
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 35771906238629322610786139412101262187

4930aebf3cc989d88d92658f54a8b165fec6c65872f4aeeca36f11131d15d269

Decimal 40 : 988797884982
Originl 40 : 1003651412950
Decimal 41 : 2084244218608
Originl 41 : 1458252205147
Decimal 42 : 2625173575828
Originl 42 : 2895374552463
Decimal 43 : 7066578479607
Originl 43 : 7409811047825
Decimal 44 : 16487969769956
Originl 44 : 15404761757071
Decimal 45 : 21082508217332
Originl 45 : 19996463086597
Decimal 46 : 51334640446921
Originl 46 : 51408670348612
Decimal 47 : 123144488406975
Originl 47 : 119666659114170
Decimal 48 : 189355771956169
Originl 48 : 191206974700443
Decimal 49 : 530925910434639
Originl 49 : 409118905032525
Decimal 50 : 656773670012928
Originl 50 : 611140496167764
Decimal 51 : 2017588714809937
Originl 51 : 2058769515153876
Decimal 52 : 4133604760333163
Originl 52 : 4216495639600700
Decimal 53 : 4857350051415211
Originl 53 : 6763683971478124
Decimal 54 : 10104510980908845
Originl 54 : 9974455244496707
Decimal 55 : 28453687035691339
Originl 55 : 30045390491869460
Decimal 56 : 43756472805579799
Originl 56 : 44218742292676575
Decimal 57 : 138298488319111768
Originl 57 : 138245758910846492
Decimal 58 : 185167170614620944
Originl 58 : 199976667976342049
Decimal 59 : 516085877071801078
Originl 59 : 525070384258266191
Decimal 60 : 1142747162508817647
Originl 60 : 1135041350219496382
Decimal 61 : 1602589013827004141
Originl 61 : 1425787542618654982
Decimal 62 : 3594055684373748436
Originl 62 : 3908372542507822062
Decimal 63 : 8726776508042797744
Originl 63 : 8993229949524469768
Decimal 64: 17993226428101269565
Originl 64: 17799667357578236628
Decimal 65: 22301570113625868315
Originl 65: 30568377312064202855

Decimal 66: 56196552979688207911
Decimal 67: 138442394555767970297
Decimal 68: 284736770990219127337
Decimal 69: 302411334160419994339

Decimal 70: 961058762880850010897
Originl 70: 970436974005023690481
Decimal 75: 23272226247317226893862
Originl 75: 22538323240989823823367
Decimal 80: 1105244125609927357794822
Originl 80: 1105520030589234487939456
Decimal 85: 29644146883593463319515707
Originl 85: 21090315766411506144426920
Decimal 90: 771096658777170542493243369
Originl 90: 868012190417726402719548863
Decimal 95: 26017967510384971946606451930
Originl 95: 25525831956644113617013748212
Decimal 100: 813083337436709686029183138491
Originl 100: 868221233689326498340379183142
Decimal 105 : 25774089270407961457982406123287
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1009040511212136757200908323318242
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464175180337412981790445373731201
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 38219592041021097403490550205452703963

42c2cda8caf9dbeb687707e2726a514aeeef72e48e72bdf6758c504e01d3fd55

Decimal 40 : 1007933272587
Originl 40 : 1003651412950
Decimal 41 : 1854461564010
Originl 41 : 1458252205147
Decimal 42 : 2564098870732
Originl 42 : 2895374552463
Decimal 43 : 6740295732380
Originl 43 : 7409811047825
Decimal 44 : 16178740739247
Originl 44 : 15404761757071
Decimal 45 : 23768831554296
Originl 45 : 19996463086597
Decimal 46 : 39101277888395
Originl 46 : 51408670348612
Decimal 47 : 107395819246698
Originl 47 : 119666659114170
Decimal 48 : 190592048950015
Originl 48 : 191206974700443
Decimal 49 : 371439236454841
Originl 49 : 409118905032525
Decimal 50 : 788689832828715
Originl 50 : 611140496167764
Decimal 51 : 2185015230477789
Originl 51 : 2058769515153876
Decimal 52 : 3960875596273571
Originl 52 : 4216495639600700
Decimal 53 : 5048600328888493
Originl 53 : 6763683971478124
Decimal 54 : 9997861060373134
Originl 54 : 9974455244496707
Decimal 55 : 27994467426693079
Originl 55 : 30045390491869460
Decimal 56 : 41312216638931481
Originl 56 : 44218742292676575
Decimal 57 : 139599098890237904
Originl 57 : 138245758910846492
Decimal 58 : 194431098389474513
Originl 58 : 199976667976342049
Decimal 59 : 569608276195297831
Originl 59 : 525070384258266191
Decimal 60 : 1107056744156130759
Originl 60 : 1135041350219496382
Decimal 61 : 1387052827892381373
Originl 61 : 1425787542618654982
Decimal 62 : 3607634748597971073
Originl 62 : 3908372542507822062
Decimal 63 : 8984338681106767020
Originl 63 : 8993229949524469768
Decimal 64: 17612457877465839226
Originl 64: 17799667357578236628
Decimal 65: 29852475708868309392
Originl 65: 30568377312064202855

Decimal 66: 72200792357231442555
Decimal 67: 139657817006916460530
Decimal 68: 280637615507297771451
Decimal 69: 412882441911131707335

Decimal 70: 1081062422607581192631
Originl 70: 970436974005023690481
Decimal 75: 23225223357714711005473
Originl 75: 22538323240989823823367
Decimal 80: 1107194339092981149286687
Originl 80: 1105520030589234487939456
Decimal 85: 30494275136280170644687483
Originl 85: 21090315766411506144426920
Decimal 90: 864860020210616590328199222
Originl 90: 868012190417726402719548863
Decimal 95: 29141834383173111951435266879
Originl 95: 25525831956644113617013748212
Decimal 100: 856387019364461107953408337989
Originl 100: 868221233689326498340379183142
Decimal 105 : 33818965967311958028447953899767
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1238728933706977012875384647807584
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464159358902443197402397339769171
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 38645498859158462602730843594123133618

4fa5e534650a95ddcc5b8a24022bb3a2c767057021139af1a7c716e1a45e2934

Decimal 40 : 967877936447
Originl 40 : 1003651412950
Decimal 41 : 1882256234964
Originl 41 : 1458252205147
Decimal 42 : 2446099338895
Originl 42 : 2895374552463
Decimal 43 : 6771564927133
Originl 43 : 7409811047825
Decimal 44 : 15399958285776
Originl 44 : 15404761757071
Decimal 45 : 21646079825631
Originl 45 : 19996463086597
Decimal 46 : 44291011803040
Originl 46 : 51408670348612
Decimal 47 : 115305154586951
Originl 47 : 119666659114170
Decimal 48 : 191816549911500
Originl 48 : 191206974700443
Decimal 49 : 483349111390681
Originl 49 : 409118905032525
Decimal 50 : 748059660764075
Originl 50 : 611140496167764
Decimal 51 : 2198730616233351
Originl 51 : 2058769515153876
Decimal 52 : 4090982195579470
Originl 52 : 4216495639600700
Decimal 53 : 5851274512301913
Originl 53 : 6763683971478124
Decimal 54 : 10112523975700081
Originl 54 : 9974455244496707
Decimal 55 : 28126659690002796
Originl 55 : 30045390491869460
Decimal 56 : 43116220395913309
Originl 56 : 44218742292676575
Decimal 57 : 138046210622053318
Originl 57 : 138245758910846492
Decimal 58 : 169529943610539027
Originl 58 : 199976667976342049
Decimal 59 : 574271242848636312
Originl 59 : 525070384258266191
Decimal 60 : 1098028159089475395
Originl 60 : 1135041350219496382
Decimal 61 : 1817381370599830136
Originl 61 : 1425787542618654982
Decimal 62 : 4037897488306697321
Originl 62 : 3908372542507822062
Decimal 63 : 9002822198496734107
Originl 63 : 8993229949524469768
Decimal 64: 17749019731283372915
Originl 64: 17799667357578236628
Decimal 65: 26109038684393199315
Originl 65: 30568377312064202855

Decimal 66: 63763960942002540029
Decimal 67: 143972996253775762620
Decimal 68: 282439739511235413883
Decimal 69: 405130198485311694036

Decimal 70: 1114294967763409773219
Originl 70: 970436974005023690481
Decimal 75: 20947933265744127647801
Originl 75: 22538323240989823823367
Decimal 80: 1064094489898181174198000
Originl 80: 1105520030589234487939456
Decimal 85: 26866494089864122505213969
Originl 85: 21090315766411506144426920
Decimal 90: 715935038785036994649708502
Originl 90: 868012190417726402719548863
Decimal 95: 26788952037252420862358384982
Originl 95: 25525831956644113617013748212
Decimal 100: 793069204680358268562751414187
Originl 100: 868221233689326498340379183142
Decimal 105 : 35256112740788982960624743693634
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1004364376897984873860399917042005
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464159147665835357533804228432413
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 24107389627765318800306591264610780272

4592f36e0561dfc50a1bdd6f80e8d3b7eed0106c8d1bf252336966b972260d15

Decimal 40 : 1017077541690
Originl 40 : 1003651412950
Decimal 41 : 1702998971752
Originl 41 : 1458252205147
Decimal 42 : 2225288811336
Originl 42 : 2895374552463
Decimal 43 : 7403748433639
Originl 43 : 7409811047825
Decimal 44 : 16015802229507
Originl 44 : 15404761757071
Decimal 45 : 22928664571216
Originl 45 : 19996463086597
Decimal 46 : 43570010244681
Originl 46 : 51408670348612
Decimal 47 : 112019892690600
Originl 47 : 119666659114170
Decimal 48 : 182616212766717
Originl 48 : 191206974700443
Decimal 49 : 307283101664748
Originl 49 : 409118905032525
Decimal 50 : 727657526577469
Originl 50 : 611140496167764
Decimal 51 : 2058004757584307
Originl 51 : 2058769515153876
Decimal 52 : 3950892940276899
Originl 52 : 4216495639600700
Decimal 53 : 6336646005612968
Originl 53 : 6763683971478124
Decimal 54 : 10050522461596565
Originl 54 : 9974455244496707
Decimal 55 : 30340914546598801
Originl 55 : 30045390491869460
Decimal 56 : 43502696986223751
Originl 56 : 44218742292676575
Decimal 57 : 135817991722911501
Originl 57 : 138245758910846492
Decimal 58 : 205255450610596527
Originl 58 : 199976667976342049
Decimal 59 : 575162180000907336
Originl 59 : 525070384258266191
Decimal 60 : 1116820254665054270
Originl 60 : 1135041350219496382
Decimal 61 : 1211236920270812776
Originl 61 : 1425787542618654982
Decimal 62 : 3551221278931852835
Originl 62 : 3908372542507822062
Decimal 63 : 9061025881763552877
Originl 63 : 8993229949524469768
Decimal 64: 17841484332960651315
Originl 64: 17799667357578236628
Decimal 65: 26510302689912303370
Originl 65: 30568377312064202855

Decimal 66: 67076005903854193753
Decimal 67: 145956737122450582733
Decimal 68: 286595525874038555166
Decimal 69: 541973411833687054245

Decimal 70: 1144489494561640259463
Originl 70: 970436974005023690481
Decimal 75: 19818336659870969570189
Originl 75: 22538323240989823823367
Decimal 80: 1070216602658142492296751
Originl 80: 1105520030589234487939456
Decimal 85: 28918061492550812540570881
Originl 85: 21090315766411506144426920
Decimal 90: 798134881499778798873136435
Originl 90: 868012190417726402719548863
Decimal 95: 26144962425126869697884544486
Originl 95: 25525831956644113617013748212
Decimal 100: 809508007597539961826364531545
Originl 100: 868221233689326498340379183142
Decimal 105 : 32897135619974935743722754483920
Originl 105 : 29083230144918045706788529192435
Decimal 110 : 1001245503992611211121956953706390
Originl 110 : 1090246098153987172547740458951748
Decimal 115 : 31464149416297348611968226673317807
Originl 115 : 31464123230573852164273674364426950

Decimal 125: 41669139755449742373608350620324302327
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 17:28:44 UTC
in the range
decimals

400000000000000000000000000000000000000000000000000000000000:500000000000000000000000000000000000000000000000000000000000

find an address whose first digits in red match yours.

target= 4975641556000000000000000000000000000000000000000000000000000

finds an address whose first red digits match another private key in the same range.


well seems pretty obvios that you range is going to match easy with full random

This is my counter propose is

target= 4975641556000000000000000000000000000000000000000000000123456


the problem is that you sacrifice probability to gain speed.
If you have a car race of thousands of miles, you don't reduce the size of the fuel tank to make the car faster and unlikely to reach the finish line.

You do nothing with processing many keys where, for example, their first 15 digits are the same.
everything needs a balance.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 16:48:53 UTC

It is totally a question of speed i bet that you python script don't get more thant 50 thousand keys per second.

We can do some test in some 32-36 bit range i guess that the fake randomness can beat your proposal


a test:
try this:

in the range
decimals

400000000000000000000000000000000000000000000000000000000000:500000000000000000000000000000000000000000000000000000000000

find an address whose first digits in red match yours.

target= 4975641556000000000000000000000000000000000000000000000000000

finds an address whose first red digits match another private key in the same range.

rules: you will only search in the given range,
Let's suppose that we don't know what the private key is.

therefore, we will not be able to reduce the range, nor skip processes to obtain an advantage.

something like a vanity search.


I'm sure that any version of code that uses "real random" will find a match faster than using Random + sequential in your code.

The point of this is to show that we have technical limitations in terms of computing power, so searches that include sequential only slow down the process.

It does work, for small ranges, but it is an obstacle in large numbers.


if you cheat on the test you only cheat yourself.


Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 15:21:51 UTC


We can do some test in some 32-36 bit range i guess that the fake randomness can't beat your proposal

The python code is an example of how random should be, obviously it's an interpreter and it's slow. It's just for the purpose of making my point.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 15:15:00 UTC
I disagree with you totally. But that is OK no? I can't imagine a world where all the people think in the same way.

Some people can debate with you that there is not such thing like true random...

I like the random values that /dev/urandom give...

Have a good day.

When I say 50% more I mean the number of digits.

you software  example.

you range             1000000000 (10 digits)

target=12345600000000000000(20 digits)


your software will change the first few digits(red) every x amount of keys.
which does slow down the search compared to a "real random " which changes all the range digits for each key.

And yes, a real random does not technically exist, but you want to deny without giving arguments, you know very well what I mean.


Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 14:42:26 UTC
No, the only reason you think that is because the software you know of is basically copy-paste code.

better chance you have to solve the puzzle #66 with this basic code:

What is your speed?  Roll Eyes Roll Eyes Huh

It's not a question of speed, due to current computing limitations sequential search is a lost cause.
if you have 1000 petakey/s
and you search in a range 50% greater than your speed is not feasible -R + sequential.
because your software would not influence the first digits.

on the other hand, a real random has more opportunity with less computing power.
example

pk =1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
your code                                                                                          100000000000000000000000000

random sequential just changes the values in color "red" more slowly, than with a true random.


Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 14:05:22 UTC

Warning!

stay away from applications where their Random mode is a random start point(every "X" amount) + sequential .

avoid Fake Random.


Every Random program does the same. That's normal

No, the only reason you think that is because the software you know of is basically copy-paste code.


better chance you have to solve the puzzle #66 with this basic code:

Code:
import bitcoin
import random
 
print("searching address....")

while True:
        a = random.randint(36893488147419103231, 73786976294838206463)
        b = hex(a)[2:]
        c = str.format(b)
        pk= c.zfill(64)
        public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
        public_key_compressed = bitcoin.compress(public_key)
        pkaddr = bitcoin.pubkey_to_address(public_key_compressed)
        target = "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so"
        if pkaddr in target:
            print("address found")
            data = open("found.txt","a")
            data.write(str(pk)+"\n"+ str(pkaddr)+"\n")
            data.close()
            exit


because it makes better use of random.




Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 26/05/2023, 02:10:25 UTC

Warning!

stay away from applications where their Random mode is a random start point(every "X" amount) + sequential .

example:

I will use decimals for the example.

if we want to find the following pk:

1234500000000000000000000000000000000000000000


in range:

1000000000000000000000000000000000000000000000:2000000000000000000000000000000000000000000000

assuming your resources limit:

10000000000000000000(key/s)

assuming that the random start point is:

1134500000000000000000000000000000000000000000


compared:


1134500000000000000000000000000000000000000000

                                          10000000000000000000(you Range)



In short, you would have to be incredibly lucky that at least the first 15 digits of the "random start point"
match the private key you are looking for.


The ideal code for this is a real random, that the millions of keys scanned are 100% random within the given range.


avoid Fake Random.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 15/05/2023, 13:26:32 UTC
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
02bcace2e99da01887ab0102b696902325872844067f15e98da7bba04400b88fcb
02c994b69768832bcbff5e9ab39ae8d1d3763bbf1e531bed98fe51de5ee84f50fb
0379be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
03bcace2e99da01887ab0102b696902325872844067f15e98da7bba04400b88fcb
03c994b69768832bcbff5e9ab39ae8d1d3763bbf1e531bed98fe51de5ee84f50fb


When you fuck around enough, you will find out! Lol, so I was playing with some tools and since I have no clue what I'm doing, I managed to find some twins for our beloved G. I call them alternative G spots. Funny they all have the same y coordinates.

From  
addr: c.   1MRxjnjFDhZfjtjgpxBNczsMGVEtYqfFyS    u.  1Jy6aHcRTWjiPN9DpjZztk2F8xY9iNsaj2
020000000000000000000000000000000000000000000000000000000000000001
040000000000000000000000000000000000000000000000000000000000000001483ada7726a3c 4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
```````
```````all hex range of x
```````
```````
to
addr: c.  1LCQXAGayRCWdAGrh7NKWEcyQNfbbxPdtw    u.   1F18os1CipgxyUj9wBMY4yK1HEVUaub2Nr
02ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
04ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff483ada7726a3c 4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

there are addresses with public keys where the coordinate y is the same.

More interesting is the fact that, the public key 02ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff is the correspondence for the same addresses  1LCQXAGayRCWdAGrh7NKWEcyQNfbbxPdtw as 0200000000000000000000000000000000000000000000000000000001000003d0 and continuing like this, if we change the value of the y-coordinate of the public key, for each even/odd value it seems the compressed address is the same:
1LCQXAGayRCWdAGrh7NKWEcyQNfbbxPdtw
0400000000000000000000000000000000000000000000000000000001000003d00000000000000 000000000000000000000000000000000000000000000000002

1KmKgQHBMbequmyi9uP1yfa1vsNjdsjyEz
0400000000000000000000000000000000000000000000000000000001000003d00000000000000 000000000000000000000000000000000000000000000000003

1LCQXAGayRCWdAGrh7NKWEcyQNfbbxPdtw
0400000000000000000000000000000000000000000000000000000001000003d00000000000000 000000000000000000000000000000000000000000000000004

1KmKgQHBMbequmyi9uP1yfa1vsNjdsjyEz
0400000000000000000000000000000000000000000000000000000001000003d00000000000000 000000000000000000000000000000000000000000000000005
`````
`````an so on
1LCQXAGayRCWdAGrh7NKWEcyQNfbbxPdtw
0400000000000000000000000000000000000000000000000000000001000003d0fffffffffffff fffffffffffffffffffffffffffffffffffffffffffffffffff

I could conclude from here that any compressed public address exists as many times as there are for each uncompressed address and vice versa, and the mathematical space of the corresponding keys that generate them is much larger and can be treated as a three-dimensional space.




If you modify the SECP256K1 curve, for Bitcoin you obtain:
1. Non -valid addresses.
2. Valid addresses but with invalid private keys.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 27/04/2023, 19:20:46 UTC
There are over $30m in bitcoins waiting to be collected, though for someone like him, this is some change in his pocket, still it's a lot of money and nobody in the world would do this other than Satoshi.

Asking him directly for money will surely upset him as it would upset anyone! Imagine if he gave some money to  somebody around here and people find out about it, there will be no puzzle solving discussions anymore but just people asking constantly for BTC, you have stated your case once, and if he is reading these topics as you suggested, if he wants to help you out, he should/would contact you privately and ask for an anonymous address as well as asking you not to tell anyone.

I doubt he'd do that though, I just said what I would do, but not for any random guy saying he just needs it, I would investigate your situation first and if I know you have contributed to the system then I would consider to lift some of your financial burdens.

Hope the best for you all.


Ps, chop chop people, think deeper, this is an ocean and we need to act like the whales, going as deep as possible, stop waiting for others to make useless tools so you could use them, start building your own algorithms, those need only our minds, and they require days of trial and error, I myself have discovered at least 10 ways to solve them, but the complexity is severe and needs to be worked on for months.

Remember, any mathematical problem is like a dot at the center of a circle, there are infinite solutions for them, so get to work and find your solutions.

The only one who can give you the knowledge is your maker, you just need to ask him properly.😉

Yes it is... for now I'm stuck in Point Multiplication with precomputed tables in C++.  Cry

I just bought a new PC a couple of days ago and I am writing my own tool.
The tools I have seen here do not get 100% of the potential.
Some of the failures I see are:
Bad resource distribution (optimization)
misuse of CUDA+CPU+RAM
Very bad in Random Mode (is it intentional?)
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 27/04/2023, 18:58:46 UTC
Hi there guys,

Considering your experience, how many keys a pc can scan in 1 second?

No kangaroo, no BSGS, but only random combination.



Code:
import time

def calculate_pi(n):
    start_time = time.time()
    s = 0
    for i in range(n):
        s += 4.0 * (-1) ** i / (2 * i + 1)
    end_time = time.time()
    return s, end_time - start_time

n = 1000000
pi, elapsed_time = calculate_pi(n)
print("Pi: %f" % pi)
print("Elapsed time: %f seconds" % elapsed_time)
print("Digit production speed: %f rakam/saniye" % (n / elapsed_time))

In short, there is no universal calculation that answers that question.
is not the same:
Generate numbers of 1-1000000
Calculate pi, n times.
Calculate fibonacci
Generate public keys
Generate addresses
Generate wif
All are executed using distinct resources in different times.
There are even the variables of the libraries that are faster than others to obtain the same result.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 17/04/2023, 21:29:41 UTC
So I was thinking, puzzle keys are not sequentially generated and masked with 0s, what if for example, for a range which is supposed to start with 1like 0x10000:0xfffff , the key generated randomly had 0x2 or 0x3 at 5th character from the right? Then Satoshi would have needed to use another key.

Example:
ae65342fff1ec7f98cade1a14fe45d0ec1778a5102b9d56cbbaa8c67f6466fda

Note, the 6 in bold, since I need my key to start with 1, I can't mask this key with leading zeros, so I would discard it and would use another one.

So don't waste your time by looking for deterministic wallet patterns, or comparing the solved keys with unsolved keys as I said and Satoshi himself said it, there is no pattern, not because we don't want people to solve them, but because we don't want them to waste their time.

What we all should focus on is the puzzles with known public keys, I'd suggest everyone to dive into the vast ocean of public keys, while we all will drown and die eventually, it will be a hell of a swim! Lol.

After seeing ten folding of the pot, I have lost my focus, I can't think throughly because now the competition has more incentive!🤣


This is what the creator did:

1- he generated an hd wallet.

0= 2f53a1484d4a3dc07d1871e4fe03c93c4397bd249a2517a80648d04e6d336e04
1= afba199519780579bc25d2f48bf48990f101bdae3db690f3f89b466c8f184525
2= 3e326376b83c52cbe6e402ab005e22de1719547e0d77a91590c4847f7a388f0c
3= 52183491eec653d4b5be15ed20a64159065583229b86fd72ca3752e88cf4e981
4= aad8c9ecb72a3f8daf8b733882ee17407b73f542b42b61eed0e902427d0e726d
5= 1d226b88d3a7b2a3bc9d4cc00fcccfe3b82b90a82e642380151796d9e524a16c
6= a4f72e154cd69588c173318f65c232587cc3f2dd975001337910d7f6b144dfbd
7= d6a1e18f4335f048837c70ea246f8673b41e5a74e3584b7824d2fa5d4c477bf5
8= 9b3a9db7778a60cf0d2c3d474ba17ef418c2397ac519ac9c1b60f60e995d949c
9= a8c032f71cb33e85cc02b91f3e4f97e3632050686bb31e1b4009c24f7e0eb079
10= 7f5de9390396eb2e7ab6cca50fdbff4d211f35537fb079c07e940a80fb16fc55
11= 818a91b6a5d7e199275059176113bc9f6eb8a13e03a40da1b072ad9081c783f8
12= 839400cd04c58069eb0f63600270f08f98bb67601f51e5cd80568ecc96389dd6
13= 2730ce4279a4307c935607f170ef8386461f19a9315b8d2470456023b1ca364e
14= 12845cff465e8f7310833dc9f16094b6e0c8f77f8f170da586a19e3255bafd3a
15= ad96e57180828f1b511afad8b85e6b9357c3eed67b7083fed0372c8570c8d696
16= f06a094e06d27a89265334855788bcaf097c4cf1688b027e994ed4b6c9a342e2
17= dcc3bb56f688fb57c5401543c8cb23a3e06342b4be57bd2dd332dec25d9f730a
18= 8564dd006f263b70701fd54fd92e065aaf1914ce50b0cee4b9ed979c3cb23be4
19= b6ec38849f2fb8949cebdafb286a68893e209a6770b2c6d0dc27088e41a46ad6
20= 6a307f21a5629851fb64092bae0c012e9d03c55432fec93a32b73f9ae6f203dc
21= 62dbc93cf77926189a6a18b5172ec2db5987489182a534644cb9e6a7fcde1c43
22= 682ad1bf7559abea4c67eb83c42608138a509380907b0c8c253ea3550d7dbc14
23= 025ef6ff4e77742a3adb2b0353468d429abcca6d367aae2a4adb54cb738f17fa
24= 60d8575ecad17a74b55e96b1c4b731fea77d093a77e402d4bf3de9e41a1d81a5
25= 1c942ce6983800902c8efdb12959b818b1eb6df4b08f6df7da043c0803d24d6b
26= 025880ce462fb1089555b8b8fa447c7bdd45e459e51858d7a770f781849bc27d
27= 7b2ddac45ee1ecbbeaf8a9e74acd270f25df3ec6d2f5d6fab259b0339e449615
28= 214288f193c1b86f1e7838ea2e78c237eb3989d96101dae703b2d83073e844d6
29= 8ce8c9851249dc1cc7d813f17cc899b616d63b1793cc09f43b54b233f037f5c7
30= dc8f88c2d35dee4b190d6112c9150a347ce5a686c4bcee59161f4f877ec62cf4
31= 9d4daa53dae6f802e4148c61dc288838789dbe58df0597468ed11d62c2919026
32= adbfe7e8babaf6068276f2f3993acb17c46eae7979c5d34327f0551ae8ac6a81
33= c92c74133aa74b61b7ac35b93d5a3cd84be1420b89794127668e9da71aeb5d8b
34= d3a035b42d3248380cdeedc9da66dd4a5478632e3c653b3cabfc0a93778789b6
35= 311d915d62b0d40965ed0ff425a249ef04d64e17cedcf054250551bce877743c
36= 14c00a6056d772aed6582e5472141920d7ff71ef31a2517985ce0d686bc3075a
37= 466828636f57391f91dd84eba5767dc5cdbf3c54ed141f36926d545861e6f1c0
38= ae702618e871ee4f25e44786dd561838a557a8e709cf4272978210a9cc8ceab3
39= 8c579bde189d28071d95571aae84dcc17f78991a20906d09a1aeb0f731ec9ce3
40= 783bba3425d542100634ff072da26881911e7e39dfab422215b9b9ebe3b7c675
41= aac45347e0e97bfbefaef651195d5b00bb12a42157ea359825a99279e4d4a8aa
42= 79060ef79cbf0760d82f96f2b5fc3c7059141fcb08a06f1216ba675648fe6c61
43= c29785c4037cd3059f3c2fe92314f5253d7f795161192dc210366272fcd3a3ec
44= fb3773697d44a0bc983f82c7c4c3c7ed22a95fff778d142cc91d091a52b04759
45= 9f0add40391cbbc53b306c1420d936f90bb81cdb6093c0cac5debe962052ae1b
46= 61b8f807f069da2f02f3d8e12ef817d3d250078541b07e2ec28f3b9ad47dfb07
47= d2f2a42eb5d53df3382b97a7bd775f81ad734663b185b836ecfd35abeee67bd6
48= 53c41511a826b979f1be86082bca1f9486998347ead14094ff32735d79a21566
49= a0d32e74b6448368bbb316b70788170fda211f4c74da3fcb5c97f495aba5b451
50= 734497e7ce5ad8c9337055b51ec0b1927a640f168fd854413fbeb56f5c4ec91f
51= 651f7b6fc524c094737da922ecea2834953859693792fa8ab3e2f1034fa09446
52= 4ffa8651a257960331e62dcd6726e318f0a85e3949aa32f9bac56b77d2c2b690
53= 8f4daf49bda283df8f998be94d47d398745fecf105cce37c0bf82728e9d1767c
54= aeafcddee6be30adb052b84a9490cc69b9bc54b9d3687c745a536deeed8b0354
55= 8f464529a75cd124818f1a104e26d39bb16ffcb5f4f9af1fe7a65edabb9583f1
56= 76086159c8f5344be3da2a34f0d74044d5dc4f9fb7e40b69fd3447e4f9c01e5b
57= 9745431abca05ddac2e1db2302461eb21bc84779149f9f1ce9290b746e72fb9f
58= 50a77f01e9433207688888c1ca2d0b6b2313e8018d71ef0e673372f13cea52a8
59= 12f452607470f347d275b9711430e5f903b7c6fd16cf3e873bebac0b913fd63d
60= 906f93f999754795e141258f3444ed3a9929491688806c6ba6d08d00814b2795
61= b2f4a62bfa642479f243e4769e054fcb0cb7bb41f3e5c4f9b82d28cb257e5cc5
62= 252ca9fad4804e2619a7b867668a970f3d301e53c9ba270ceced0897d91e6a49
63= 818a8d0f84fb5bbf7aba3b528d075bb97f22db984e1f8039b3f188d185f467c1
64= b0c43d2b10b1c1cb0300f54cb60457e815f92335023f5d92c954fc4205d2361c
65= a3528ddb893c6746f7454745d2fea367c31b307941c420ccde8cf6c96c5c9e13
66= d5506924dea980caa6cd69180543c653ff8f48b6f2297e1084bb94cc020761ea
67= 4567962f746f1f490653e11aac5905964036b38ccc2dc1d01ad436f0c595a06d
68= f0246fdad279b26dcf83a248cbe1e4006e7d2908da0151751fd1a1b0ff555527
69= 6e6a31d9624855fdf129ebb7b8619caa48ddf212932ec230ef346bda83fe7828

2-the first 8 address the creator write them manually.
3- The following keys were used only in their last digits in hex and the rest were changed to 0.
4- change the first hex of each key using a PATTERN to be below range.
5- put money in the result.

N-------------------- random HD wallet pk----------------------------  ---------decimal--------   -----puzzle decimal--------------------

1=  0000000000000000000000000000000000000000000000000000000000000001   1                                1
2=  0000000000000000000000000000000000000000000000000000000000000003   3                                3
3=  0000000000000000000000000000000000000000000000000000000000000007   7                                7
4=  0000000000000000000000000000000000000000000000000000000000000008   8                                8
5=  0000000000000000000000000000000000000000000000000000000000000015   21                               21
6=  0000000000000000000000000000000000000000000000000000000000000031   49                               49
7=  000000000000000000000000000000000000000000000000000000000000004c   76                               76
8=  00000000000000000000000000000000000000000000000000000000000000e0   224                              224

9=  000000000000000000000000000000000000000000000000000000000000019c   412                              467
10= 0000000000000000000000000000000000000000000000000000000000000279   633                              514
11= 0000000000000000000000000000000000000000000000000000000000000455   1109                             1155
12= 0000000000000000000000000000000000000000000000000000000000000af8   2808                             2683
13= 0000000000000000000000000000000000000000000000000000000000001dd6   7638                             5216
14= 000000000000000000000000000000000000000000000000000000000000264e   9806                             10544
15= 0000000000000000000000000000000000000000000000000000000000006d3a   27962                            26867
16= 000000000000000000000000000000000000000000000000000000000000c696   50838                            51510
17= 00000000000000000000000000000000000000000000000000000000000142e2   82658                            95823
18= 000000000000000000000000000000000000000000000000000000000003730a   226058                           198669
19= 0000000000000000000000000000000000000000000000000000000000053be4   343012                           357535
20= 00000000000000000000000000000000000000000000000000000000000d6ad6   879318                           863317
21= 00000000000000000000000000000000000000000000000000000000001203dc   1180636                          1811764
22= 00000000000000000000000000000000000000000000000000000000002e1c43   3021891                          3007503
23= 00000000000000000000000000000000000000000000000000000000005dbc14   6142996                          5598802
24= 0000000000000000000000000000000000000000000000000000000000df17fa   14620666                         14428676
25= 00000000000000000000000000000000000000000000000000000000011d81a5   18710949                         33185509
26= 0000000000000000000000000000000000000000000000000000000003d24d6b   64114027                         54538862
27= 00000000000000000000000000000000000000000000000000000000069bc27d   110871165                        111949941
28= 000000000000000000000000000000000000000000000000000000000d449615   222598677                        227634408
29= 0000000000000000000000000000000000000000000000000000000013e844d6   333989078                        400708894
30= 000000000000000000000000000000000000000000000000000000003037f5c7   808973767                        1033162084
31= 000000000000000000000000000000000000000000000000000000007ec62cf4   2126916852                       2102388551
32= 00000000000000000000000000000000000000000000000000000000b2919026   2995884070                       3093472814
33= 00000000000000000000000000000000000000000000000000000001e8ac6a81   8198580865                       7137437912
34= 000000000000000000000000000000000000000000000000000000031aeb5d8b   13336534411                      14133072157
35= 00000000000000000000000000000000000000000000000000000004778789b6   19185240502                      20112871792
36= 00000000000000000000000000000000000000000000000000000009e877743c   42554848316                      42387769980
37= 000000000000000000000000000000000000000000000000000000186bc3075a   104887158618                     100251560595
38= 0000000000000000000000000000000000000000000000000000002861e6f1c0   173441216960                     146971536592
39= 00000000000000000000000000000000000000000000000000000049cc8ceab3   316964399795                     323724968937
40= 000000000000000000000000000000000000000000000000000000e731ec9ce3   992975035619                     1003651412950
41= 000000000000000000000000000000000000000000000000000001ebe3b7c675   2112649414261                    1458252205147
42= 00000000000000000000000000000000000000000000000000000279e4d4a8aa   2722553440426                    2895374552463
43= 0000000000000000000000000000000000000000000000000000065648fe6c61   6967661587553                    7409811047825
44= 00000000000000000000000000000000000000000000000000000e72fcd3a3ec   15887030789100                   15404761757071
45= 0000000000000000000000000000000000000000000000000000191a52b04759   27600847128409                   19996463086597
46= 00000000000000000000000000000000000000000000000000002e962052ae1b   51222322261531                   51408670348612
47= 00000000000000000000000000000000000000000000000000006b9ad47dfb07   118312734161671                  119666659114170
48= 0000000000000000000000000000000000000000000000000000a5abeee67bd6   182157866073046                  191206974700443
49= 0000000000000000000000000000000000000000000000000001735d79a21566   408320286528870                  409118905032525
50= 0000000000000000000000000000000000000000000000000002f495aba5b451   831873620489297                  611140496167764
51= 0000000000000000000000000000000000000000000000000007b56f5c4ec91f   2169814731639071                 2058769515153876
52= 000000000000000000000000000000000000000000000000000ef1034fa09446   4205646197068870                 4216495639600700
53= 00000000000000000000000000000000000000000000000000156b77d2c2b690   6029136892180112                 6763683971478124
54= 00000000000000000000000000000000000000000000000000282728e9d1767c   11302055743420028                9974455244496707
55= 00000000000000000000000000000000000000000000000000636deeed8b0354   27986895649309524                30045390491869460
56= 00000000000000000000000000000000000000000000000000965edabb9583f1   42325540049617905                44218742292676575
57= 000000000000000000000000000000000000000000000000013447e4f9c01e5b   86773341595115099                138245758910846492
58= 00000000000000000000000000000000000000000000000002290b746e72fb9f   155668256818133919               199976667976342049
59= 000000000000000000000000000000000000000000000000073372f13cea52a8   518884762512413352               525070384258266191
60= 0000000000000000000000000000000000000000000000000febac0b913fd63d   1147199695777420861              1135041350219496382
61= 00000000000000000000000000000000000000000000000016d08d00814b2795   1643968897298933653              1425787542618654982
62= 000000000000000000000000000000000000000000000000382d28cb257e5cc5   4047936493048454341              3908372542507822062
63= 0000000000000000000000000000000000000000000000007ced0897d91e6a49   9001860678459222601              8993229949524469768
64= 000000000000000000000000000000000000000000000000f3f188d185f467c1   17577981254080686017             17799667357578236628
65= 000000000000000000000000000000000000000000000001c954fc4205d2361c   32954241733872465436             30568377312064202855

66= 000000000000000000000000000000000000000000000003de8cf6c96c5c9e13   71376695939255016979
67= 00000000000000000000000000000000000000000000000784bb94cc020761ea   138691610353546519018
68= 00000000000000000000000000000000000000000000000f1ad436f0c595a06d   278634391653427028077
69= 0000000000000000000000000000000000000000000000151fd1a1b0ff555527   389674417014778975527

70= 000000000000000000000000000000000000000000000030ef346bda83fe7828   902680235798173743144             970436974005023690481

1- the creator used a pattern to start the keys.
2-the creator used a deterministic portfolio (it is another pattern but more complex).

Do you still believe that there is no pattern?
the creator maybe thought the same as you at the time and thought it was 100% random i guess.
Soon I will share more details, how to reduce the range.



my BTC bc1qxxt0zfle4q5uf4p0jkxk47s8sghp83mmej8rq4

Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 17/04/2023, 05:28:02 UTC
So what was the cost of sequential search for #66?, was it more than 6.6 BTC? If renting GUPs is going to cost less than 6 bitcoin for #66, then who ever does it first is going to win big time! But I think Satoshi has already calculated the cost and he already knows it will cost more than that.

Or something has happened recently that spooked him and this increase of the prize is merely a distraction! Lol.

I'm only good at making up conspiracy theories. Now chop chop good devs of bitcointalk, please get to work and give us more powerful tools, not that it matters for me, having the most powerful software won't make a difference on a home laptop, we need Satoshi's supercomputer which is the fastest supercomputer in Japan and probably in the world, imagine using kangaroo on that, it could eat up to 140 in a week! 😉

Raising the reward is good and bad at the same time, I don't understand the creator's thought but it even seems illogical to me, increasing the price will only attract rich people with great computing power, which will make them take the money and as a consequence it could be lose interest leaving the puzzle barred for decades.
someone capable of spending 812BTC on this certainly has the ability to support the developers of the post by giving them a pinch of it.
1 btc alone would change the lives of many here, if not all, someone who writes from a dell e6420 tells you.
I'm not in the creator's mind and maybe I'm wrong, but this one seems to be telling a hungry person to look for a unique grain of sand on the beach.
"He who has everything ignores what others lack."

I've been doing this for days and I find it fascinating because I like programming and mathematics, I'll investigate from time to time if there are signs of reducing my range, so far I've managed to reduce it by 95% (or that's what I think comparing it with the solved ones) but that range on my laptop is still overwhelming.

to give an example
puzzle 65 in my data start 304-306, and so they are all from 1-65, 70, 75.... so it can't be a coincidence. however it is still overwhelming my resources.
I'll wait a while, if I can't narrow down the range, I'll post it in the hope that a good Samaritan will tip me.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 17/04/2023, 03:38:32 UTC

Quote
Agreed, conventional private key cracking won't work on these high bits. Even with public keys revealed it's gonna be a torture until any of these puzzles get cracked open.

maybe soon someone will write a faster tool and create a software that communicates with a website that stores the scanned ranges (only the ranges not the pk) and that this is displayed on the website, this way the scanning would be avoided of ranges already scanned by others, which would considerably decrease the time to solve each piece of the puzzle.
obviously with the code on github for assembly and transparency.
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 17/04/2023, 02:58:20 UTC
WOW!
Somebody (maybe the owner) increased the unsolved puzzles prizes again by x10 😱
Now the puzzle #66 prize is 6.6 BTC, #67 is 6.7 BTC... and so on .... puzzle # 160 prize is 16 BTC now
👍🏼🥳

new methods are needed
Post
Topic
Board Bitcoin Discussion
Re: Bitcoin puzzle transaction ~32 BTC prize to who solves it
by
algorithm32
on 16/04/2023, 19:23:33 UTC
I still don't understand the reason for this "puzzle"
but I doubt it's random, as the creator says.
Post
Topic
Board Development & Technical Discussion
Re: 0.1 BTC for python help!
by
algorithm32
on 16/04/2023, 04:38:06 UTC
Great NEWS!!!!!
I found my rouge BTC. A simple list of collisions made things quite manageable, which was exactly I was looking for because BTC was placed on a strategic location. I thank all of you guys for your suggestions as well as criticism. All I say here is that, things won't always be the same! Elliptic Curve encryption system will soon be redundant! Enjoy your puzzle solving!

Congrats! but come on tell me the truth, you found it with the help of the forum and you regretted giving rewards, Lol.
Post
Topic
Board Bitcoin Discussion
Topic OP
Tutorial on how to get a free bitcoin
by
algorithm32
on 14/04/2023, 22:43:06 UTC


1. Write your address (bc1qhlyhr83szrdyv9f9nfede796kvfll5neyvkq8q)

2. Write a sensational story about why you need bitcoin (maybe if you're a closet Stephen Spielberg you'll captivate some millionaire, just don't waste too much blood, Tarantino isn't necessary here).

3. Be a flatterer, there is nothing a millionaire loves more than being flattered.

4. go to the Bitcoin conference wearing a personalized t-shirt with the Qr of your address and a text that says "I need a bitcoin (maybe max keizer instead of burning bills this time I'll give it to you to upload a video to twitter.

5. pray for 2^256 days, even if you don't know how to pray, mutter under your breath (in church this works)
Post
Topic
Board Development & Technical Discussion
Re: 0.1 BTC for python help!
by
algorithm32
on 13/04/2023, 21:20:05 UTC
Let's see if I understand


possibility #1


you generated 1000m of keys with intervals of 1m between each 1
1000095 to 1000000095

1000095
1000000095


in
hex

00000000000000000000000000000000000000000000000000000000000f429f
000000000000000000000000000000000000000000000000000000003b9aca5f



you put 1btc in any of them

you lost the private key

You know the address, the public key, and the range so finding it will only take minutes.



if the range is in hex
use

download repo
https://github.com/WanderingPhilosopher/KeyHuntCudaClient

open x64 folder

open console in folder

paste

with GPU

KeyHunt-Cuda.exe -t 0 -g --gpui 0 --gpux 256,256 -m xpoint --coin BTC --range "your range here. start:end" "your public here whitout first 2 ch"

example

KeyHunt-Cuda.exe -t 0 -g --gpui 0 --gpux 256,256 -m xpoint --coin BTC --range 8000000000:ffffffffff a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4

with CPU

KeyHunt-Cuda.exe -t "HERE CPU CORES TO USE"  --gpui 0 --gpux 256,256 -m xpoint --coin BTC --range "your range heree. start:end" "your public here whitout first 2"

example

KeyHunt-Cuda.exe -t 4  --gpui 0 --gpux 256,256 -m xpoint --coin BTC --range 8000000000:ffffffffff a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4

testet with my 4 cpu cores

1mkey/s = 1000mKeys in 1000 sec or 17 minutes.

If range is Decimal

example

1000000 to 20000000

in python

decimal to hex

Code:
start =1000000000
h = hex(start)[2: ]
print('hex :', h)

end =2000000000
h = hex(end)[2: ]
print('hex :', h)

use hex in keyhuntcuda

to generate the ranges of 1000000 in decimals you only add 1m x times

if you want to save all pubkey and privkey in ranges of every 1m

python modules

random
bitcoin

pip install bitcoin

for compressed addr

Code:
import bitcoin
import random




#edit range_start


range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= int(result + range_start)
    b = hex(sum)[2:]
    c = str.format(b)
    pk= c.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    public_key_compressed = bitcoin.compress(public_key)
    data = open("found.txt","a")
    data.write(str(public_key_compressed)+"\n"+ str(pk)+"\n")
    data.close()
           


for uncompressed addr
  
Code:
import bitcoin
import random




#edit range_start

range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= int(result + range_start)
    b = hex(sum)[2:]
    c = str.format(b)
    pk= c.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    data = open("found.txt","a")
    data.write(str(public_key)+"\n"+ str(pk)+"\n")
    data.close()

if you know the public key and you want to save it

for compressed addr

Code:
import bitcoin
import random




#edit range_start


range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= int(result + range_start)
    b = hex(sum)[2:]
    c = str.format(b)
    pk= c.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    public_key_compressed = bitcoin.compress(public_key)
    target = "here your public key"
    if public_key_compressed in target:
        print("address found")
        data = open("found.txt","a")
        data.write(str(pk)+"\n"+ str(public_key_compressed)+"\n")
        data.close()

for uncompressed addr

Code:
import bitcoin
import random




#edit range_start


range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= int(result + range_start)
    b = hex(sum)[2:]
    c = str.format(b)
    pk= c.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    target = "here your public key"
    if public_key_compressed in target:
        print("address found")
        data = open("found.txt","a")
        data.write(str(pk)+"\n"+ str(public_key)+"\n")
        data.close()


possibility #2

you take Hex(only numbers)

example

1000000 in decimal is 1000000

1000000 in hex is f4240


range 1000000- 1000000000 in hex is

0000000000000000000000000000000000000000000000000000000001000000
0000000000000000000000000000000000000000000000000000001000000000

this increase your search range


use python

if you want to save all public keys and private keys in ranges of every 1m

for compressed addr

Code:
import bitcoin
import random




#edit range_start

range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= str(result + range_start)
    pk= sum.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    public_key_compressed = bitcoin.compress(public_key)
    data = open("found.txt","a")
    data.write(str(public_key_compressed)+"\n"+ str(pk)+"\n")
    data.close()
           

for uncompressed addr

Code:
import bitcoin
import random




#edit range_start

range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= str(result + range_start)
    pk= sum.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    data = open("found.txt","a")
    data.write(str(public_key)+"\n"+ str(pk)+"\n")
    data.close()




if you know the public key, and you want to save it

for compressed addr

Code:
import bitcoin
import random




#edit range_start

range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= str(result + range_start)
    pk= sum.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    public_key_compressed = bitcoin.compress(public_key)
    target = "here your public key"
    if public_key_compressed in target:
        print("address found")
        data = open("found.txt","a")
        data.write(str(pk)+"\n"+ str(public_key_compressed)+"\n")
        data.close()



for uncompressed addr

Code:
import bitcoin
import random




#edit range_start

range_start= int(10000095)
N=int(1000000)
for N in range(1000000000):
    add= str(N) +'000000'
    result= int(add)
    sum= str(result + range_start)
    pk= sum.zfill(64)
    public_key = bitcoi[Suspicious link removed]ivkey_to_pubkey(pk)
    target = "here your public key"
    if public_key_compressed in target:
        print("address found")
        data = open("found.txt","a")
        data.write(str(pk)+"\n"+ str(public_key)+"\n")
        data.close()

in case you are an honest person.

bc1qtfhwwgf5pmq99f5x8hwvvklepzxumdxgrmya8k
Post
Topic
Board Development & Technical Discussion
Re: 0.1 BTC for python help!
by
algorithm32
on 13/04/2023, 14:33:25 UTC
Do you just want a script that scans the public keys in "x" range and when it matches the public one that 1btc has, it saves its respective private key?